Exploiting Low-Level Image Segmentation for Object Recognition

  • Volker Roth
  • Björn Ommer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4174)

Abstract

A method for exploiting the information in low-level image segmentations for the purpose of object recognition is presented. The key idea is to use a whole ensemble of segmentations per image, computed on different random samples of image sites. Along the boundaries of those segmentations that are stable under the sampling process we extract strings of vectors that contain local image descriptors like shape, texture and intensities. Pairs of such strings are aligned, and based on the alignment scores a mixture model is trained which divides the segments in an image into fore- and background. Given such candidate foreground segments, we show that it is possible to build a state-of-the-art object recognition system that exhibits excellent performance on a standard benchmark database. This result shows that despite the inherent problems of low-level image segmentation in poor data conditions, segmentation can indeed be a valuable tool for object recognition in real-world images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Volker Roth
    • 1
  • Björn Ommer
    • 1
  1. 1.ETH Zurich, Institute of Computational ScienceZurich

Personalised recommendations