A Protocol to Provide Assurance of Images Integrity Using Memory Cellular Automata

  • A. Martín del Rey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


In this work, the use of memory cellular automata to design a cryptographic protocol to provide assurance of digital images integrity is studied. It is shown that the proposed protocol is secure against the adequate cryptanalytic attacks. As a consequence, memory cellular automata seems to be suitable candidates to the design of hash functions.


Hash Function Cellular Automaton Secret Image Secret Share Scheme Copyright Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso-Sanz, R., Martín, M.: One-dimensional cellular automata with memory: patterns from a single seed. Internat. J. Bifur. Chaos 12, 205–226 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Alonso-Sanz, R.: Reversible cellular automata with memory: patterns starting with a single site seed. Physica D 175, 1–30 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alonso-Sanz, R., Martín, M.: Elementary cellular automata with memory. Complex Systems 14, 99–126 (2003)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Álvarez Marañón, G., Hernández Encinas, A., Hernández Encinas, L., Martín del Rey, A., Rodríguez Sánchez, G.: Graphic cryptography with pseudorandom bit generators and cellular automata. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 1207–1214. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Álvarez Marañón, G., Hernández Encinas, L., Martín del Rey, A.: A new secret sharing scheme for images based on additive 2-dimensional cellular automata. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 411–418. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Álvarez, G., Hernández Encinas, A., Hernández Encinas, L., Martín del Rey, A.: A secure scheme to share secret color images. Comput. Phys. Comm. 173, 9–16 (2005)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bao, F.: Cryptanalysis of Partially Known Cellular Automaton Cryptosystem. IEEE Trans. Comput. 53, 1493–1497 (2004)CrossRefGoogle Scholar
  8. 8.
    Barni, M., Bartolini, F., Cappellini, V., Piva, A.: Copyright protection of digital images by embedded unperceivable marks. Image and Vision Computing 16, 897–906 (1998)CrossRefGoogle Scholar
  9. 9.
    Dasgupta, P., Chattopadhyay, S., Sengupta, I.: Theory and application of non-group cellular automata for message authentication. J. Syst. Architecture 47, 383–404 (2001)CrossRefGoogle Scholar
  10. 10.
    Fúster-Sabater, A., de la Guía-Martínez, D.: Cellular automata applications to the linearization of stream cipher generators. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 612–621. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Lin, C., Tsai, W.: Secret image sharing with steganography and authentication. J. Syst. Soft. 73, 405–414 (2004)CrossRefGoogle Scholar
  12. 12.
    Martín del Rey, A.: Design of a Cryptosystem Based on Reversible Memory Cellular Automata. In: Proc. of 10th IEEE Symposium on Computers and Communications, pp. 482–486 (2005)Google Scholar
  13. 13.
    Martín del Rey, A., Pereira Mateus, J., Rodríguez Sánchez, G.: A secret sharing scheme based on cellular automata. Appl. Math. Comput. 170, 1356–1364 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  15. 15.
    Mihaljevic, M., Zheng, Y., Imai, H.: A family of fast dedicated one-way hash functions based on linear cellular automata over GF(q). IEICE Trans. Fundamentals E82-A, 40–47 (1999)Google Scholar
  16. 16.
    Mukherjee, M., Ganguly, N., Chaudhuri, P.P.: Cellular automata based authentication. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 259–269. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and applications of cellular automata in cryptography. IEEE Trans. Comput. 43, 1346–1357 (1994)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Page, T.: Digital watermarking as a form of copyright protection. Computer Law & Security Report 14, 390–392 (1998)CrossRefGoogle Scholar
  19. 19.
    Queluz, M.: Authentication of digital images and video: Generic models and a new contribution. Signal Processing: Image Communication 16, 461–475 (2001)CrossRefGoogle Scholar
  20. 20.
    Richardson, D.: Tessellation with local transformations. J. Comput. Syst. Sci. 6, 373–388 (1972)zbMATHCrossRefGoogle Scholar
  21. 21.
    Seredynski, M., Bouvry, P.: Block encryption using reversible cellular automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 785–792. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Wolfram, S.: Random sequence generation by cellular automata. Adv. Appl. Math. 7, 123–169 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)Google Scholar
  24. 24.
    Wolfram, S.: A New Kind of Science. Wolfram Media, Inc. (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Martín del Rey
    • 1
  1. 1.Department of Applied Mathematics, E.P.S.Universidad de SalamancaÁvilaSpain

Personalised recommendations