A Structurally Dynamic Cellular Automaton with Memory in the Hexagonal Tessellation

  • Ramón Alonso-Sanz
  • Margarita Martín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

The major features of conventional cellular automata include the inalterability of topology and the absence of memory. The effect of simple memory (memory in cells and links) on a particular reversible, structurally dynamic cellular automaton in the hexagonal tessellation is explored in this paper.

Keywords

Structurally Dynamic Cellular Automaton Memory Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Julian, P., Chua, L.O.: Replication properties of parity CA. Int. J. Bifurcation and Chaos 12, 477–494 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alonso-Sanz, R.: Elementary rules with elementary memory rules: the case of linear rules. J. of Cellular Automata 1, 71–87 (2006)MATHMathSciNetGoogle Scholar
  3. 3.
    Alonso-Sanz, R., Martin, M.: One-dimensional CA with Memory in Cells of the Most Frequent Recent Value. Complex Systems 15, 203–236 (2005)MATHMathSciNetGoogle Scholar
  4. 4.
    Alonso-Sanz, R.: Phase transitions in an elementary probabilistic CA with memory. Physica A 347, 383–401 (2005)CrossRefGoogle Scholar
  5. 5.
    Alonso-Sanz, R., Martin, M.: Three-state one-dimensional CA with memory. Chaos, Solitons and Fractals 21, 809–834 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alonso-Sanz, R.: One-dimensional, r = 2 CA with memory. Int. J. Bifurcation and Chaos 14, 3217–3248 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Alonso-Sanz, R.: Reversible CA with Memory. Physica D 175, 1–30 (2003)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Alonso-Sanz, R., Martin, M.: Elementary CA with memory. Complex Systems 14, 99–126 (2003) and the references thereinMATHMathSciNetGoogle Scholar
  9. 9.
    Ilachinski, A., Halpern, P.: Structurally dynamic CA. Complex Systems 1, 503–527 (1987)MATHMathSciNetGoogle Scholar
  10. 10.
    Alonso-Sanz, R.: A structurally dynamic CA with memory. Chaos, Solitons and Fractals (in press, 2006)Google Scholar
  11. 11.
    Sanchez, J.R., Alonso-Sanz, R.: Multifractal Properties of R90 CA with Memory. Int. J. Modern Physics C 15, 1461–1470 (2004)MATHCrossRefGoogle Scholar
  12. 12.
    Requardt, M.: Cellular networks as models for Plank-scale physics. J. Phys. A 31, 7797–8021 (1998)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Halpern, P., Caltagirone, G.: Behaviour of Topological CA. Complex Systems 4, 623–651 (1990)MATHMathSciNetGoogle Scholar
  14. 14.
    Halpern, P.: Sticks and stones: A guide to structurally dynamic CA. Am. J. Phys. 57, 405–408 (1989)CrossRefGoogle Scholar
  15. 15.
    Hillman, D.: Combinatorial Spacetimes. Ph.D. Thesis. Univ. of Pitssburg (1995)Google Scholar
  16. 16.
    Majercik, S.M.: Structurally Dynamic CA. Univ. of Southern Maine (MsC) (1994)Google Scholar
  17. 17.
    Ilachinski, A.: Cellular Automata. A Discrete Universe. World Scientific, Singapore (2000)Google Scholar
  18. 18.
    Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis, Abington (1994)MATHGoogle Scholar
  19. 19.
    Love, P.J., Boghosian, B.M., Meyer, D.A.: Lattice gas simulations of dynamical geometry in one dimension. Phil. Trans. R. Soc. London A 362, 1667–1675 (2004)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ramón Alonso-Sanz
    • 1
  • Margarita Martín
    • 2
  1. 1.ETSI Agrónomos (Estadística)C.Universitaria.MadridSpain
  2. 2.Bioquímica y Biología Molecular IVUCM. C.Universitaria.MadridSpain

Personalised recommendations