Some Applications and Prospects of Cellular Automata in Traffic Problems

  • Boris Goldengorin
  • Alexander Makarenko
  • Natalia Smelyanec
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

In this paper we deal with mathematical modeling of participants’ movement based on cellular automata (CA). We describe some improvements of CA models of pedestrian motion taking into account the real geometrical constraints induced by a specific restricted space. Also some presumable optimization problems in traffic modeling based on CA are discussed. Besides some general problems of cellular modeling are discussed which are related to the accounting of mentality of traffic participants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Toffoli, T., Margolis, N.: Cellular automata computation. Mir, Moscow (1991)Google Scholar
  2. 2.
    Gilbert, N., Troitzsch, K.: Simulation for the social scientist. Open University press, Surrey (1999)Google Scholar
  3. 3.
    Wolfram, S.: New kind of science. Wolfram Media Inc., USA (2002)MATHGoogle Scholar
  4. 4.
    Benjamin, S.C., Johnson, N.F., Hui, P.M.: Cellular automata models of traffic flow along a highway containing a junction. J. Phys. A: Math Gen. 29, 3119–3127 (1996)MATHCrossRefGoogle Scholar
  5. 5.
    Nagel, K., Schreckenberg, M.: A cellular automation model for freeway traffic. Journal of Physics I France 2, 2221–2229 (1992)CrossRefGoogle Scholar
  6. 6.
    Schreckenberg, M., Sharma, S.D. (eds.): Pedestrian and evacuation dynamics, pp. 173–181. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Helbing, D., Molnar, P., Schweitzer, F.: Computer simulations of pedestrian dynamics and trail formation. Evolution of Natural Structures, Sonderforschungsbereich 230, Stuttgart, pp. 229–234 (1998)Google Scholar
  8. 8.
    Thompson, P.A., Marchant, E.W.: A computer model for the evacuation of large building populations. Fire Safety Journal 24, 131–148 (1995)CrossRefGoogle Scholar
  9. 9.
    Stepantsov, M.E.: Dynamic model of a group of people based on lattice gas with non-local interactions. Applied nonlinear dynamics (Izvestiya VUZOV, Saratov) 5, 44–47 (1999)Google Scholar
  10. 10.
    Wang, F.Y., et al.: A Complex Systems Approach for Studying Integrated Development of Transportation Logistics, and Ecosystems. J. Complex Systems and Complexity Science 2.1, 60–69 (2004)Google Scholar
  11. 11.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)Google Scholar
  12. 12.
    Kreighbaum, E., Barthels, K.M.: A Qualitative Approach for Studying Human Movement, 3rd edn., Biomechanics, Macmillan, New York (1990)Google Scholar
  13. 13.
    Klupfel, H.: A Cellular Automaton Model for Crowd Movement and Egress Simulation. PhD Thesis, Gerhard-Mercator-Universitat, Duisburg-Essen (2003)Google Scholar
  14. 14.
    Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260–276 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Makarenko, A.: Anticipating in modeling of large social systems - neuronets with internal structure and multivaluedness. International.Journal of Computing Anticipatory Systems 13, 77–92 (2002)Google Scholar
  16. 16.
    Rosen, R.: Anticipatory Systems. Pergamon Press, London (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Boris Goldengorin
    • 1
  • Alexander Makarenko
    • 2
  • Natalia Smelyanec
    • 2
  1. 1.Faculty of EconomicsUniversity of GroningenGroningenThe Netherland
  2. 2.Institute for Applied System AnalysisNational Technical University of Ukraine (KPI)KievUkraine

Personalised recommendations