Social Distances Model of Pedestrian Dynamics

  • Jarosław Wąs
  • Bartłomiej Gudowski
  • Paweł J. Matuszyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

The knowledge of phenomena connected with pedestrian dynamics is desired in the process of developing public facilities. Nowadays, there is a necessity of creating various models which take into consideration the microscopic scale of simulation. The presented model describes pedestrian dynamics in a certain limited area in the framework of inhomogeneous, asynchronous Cellular Automata. The pedestrians are represented by ellipses on a square lattice, which implies the necessity of taking into account some geometrical constraints for each cell. An innovative idea of social distances is introduced into the model — dynamics in the model is influenced by the rules of proxemics. As an example, the authors present a simulation of pedestrian behavior in a tram.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arias, I.: Proxemics in the ESL Classroom. Forum 34(1), Costa Rica (1996)Google Scholar
  2. 2.
    Burstedde, C.K., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of Pedestrian Dynamics using a 2-dimensional Cellular Automaton. Phys. Rev. A 295, 507–525 (2001)Google Scholar
  3. 3.
    Dijkstra, J., Jessurun, A.J., Timmermans, H.: A Multi-Agent Cellular Automata System for Visualising Simulated Pedestrian Activity. In: Proceedings of ACRI, pp. 29–36 (2000)Google Scholar
  4. 4.
    Dudek–Dyduch, E., Wąs, J.: Knowledge Representation of Pedestrian Dynamics in Crowd: Formalism of Cellular Automata. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1101–1110. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Geisler, L.: Doctor and patient – a partnership through dialogue. Pharma Verlag, Frankfurt (1991)Google Scholar
  6. 6.
    Gloor, C., Stucki, P., Nagel, K.: Hybrid Techniques for Pedestrian Simulations. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 581–590. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gudowski, B., Wąs, J.: Modeling of People Flow in Public Transport Vehicles. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Hall, E.T.: The Silent Language. Garden City, New York (1959)Google Scholar
  9. 9.
    Hall, E.T.: The Hidden Dimension. Garden City, New York (1966)Google Scholar
  10. 10.
    Helbing, D., Molnar, P.: A Social Force Model for Pedestrian Dynamic. Phys. Rev. E 51, 4284–4286Google Scholar
  11. 11.
    Narimatsu, K., Shiraishi, T., Morishita, S.: Acquisiting of Local Neighbour Rules in the Simulation of Pedestrian Flow by Cellular Automata. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 211–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Pidd, M.: Computer Simulation in Managment Science. Wiley, Chichester (1994)Google Scholar
  13. 13.
    Wąs, J., Gudowski, B.: The Application of Cellular Automata for Pedestrian Dynamics Simulation. Automatyka Journal AGH-UST, Kraków, 303–313 (2004)Google Scholar
  14. 14.
    Wąs, J., Gudowski, B.: Simulation of Strategical Abilities in Pedestrian Movement using Cellular Automata. In: Proceedings of 24th IASTED MIC Conference, Innsbruck, pp. 549–553 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jarosław Wąs
    • 1
  • Bartłomiej Gudowski
    • 1
  • Paweł J. Matuszyk
    • 2
  1. 1.Institute of Automatics 
  2. 2.Department of Modelling and Information TechnologyAGH University of Sciences and TechnologyKrakówPoland

Personalised recommendations