A Cellular Automata Model for Ripple Dynamics

  • Luca Sguanci
  • Franco Bagnoli
  • Duccio Fanelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


We present a simple cellular automata model to address the issue of aeolian ripple formation and evolution. Our simplified approach accounts for the basic physical mechanisms and enables to reproduce the observed phenomenology in the framework of a near-equilibrium statistical mechanics formulation.


Cellular Automaton Lattice Boltzmann Method Cellular Automaton Model Ripple Formation Granular Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagnold, R.A.: The Physics of Blown Sand and Desert Dunes. Chapman and Hall, London (1941)Google Scholar
  2. 2.
    Terzidis, O., Claudin, P., Bouchaud, J.-P.: Eur. Phys. J. B 5, 245 (1998)Google Scholar
  3. 3.
    Valance, A., Rioual, F.: Eur. Phys. J. B 10, 543 (1999)Google Scholar
  4. 4.
    Prigozhin, L.: Phys. Rev. E 60, 729 (1999)Google Scholar
  5. 5.
    Valance, A.: Eur. Phys. J. B 45, 433 (2005)Google Scholar
  6. 6.
    Lagree, P.-Y.: Phys. Fluids 15, 2355 (2003)Google Scholar
  7. 7.
    Csahók, Z., Misbah, C., Rioual, F., Valance, A.: Eur. Phys. J. E 3, 71 (2000)Google Scholar
  8. 8.
    Andreotti, B., Claudin, P., Douady, S.: Eur. Phys. J. B 28, 321 (2002)Google Scholar
  9. 9.
    Kroy, K., Sauermann, G., Herrmann, H.J.: Phys. Rev. Lett. 88, 54301 (2002)Google Scholar
  10. 10.
    Anderson, R.S.: Sedimentology 34, 943 (1987)Google Scholar
  11. 11.
    Anderson, R.S.: Earth Sci. 29, 77 (1990)Google Scholar
  12. 12.
    Werner, B.T., Gillespie, D.T.: Phys. Rev. Lett. 71, 3230 (1993)Google Scholar
  13. 13.
    Nishimori, H., Ouchi, N.: Phys. Rev. Lett. 71, 197 (1993)Google Scholar
  14. 14.
    Caps, H., Vandewalle, N.: Phys. Rev. E 64, 041302 (2002)Google Scholar
  15. 15.
    Anderson, R.S., Bunan, K.L.: Nature 365, 740 (1993)Google Scholar
  16. 16.
    Dupuis, A.: From a lattice Boltzmann model to a parallel and reusable implementation of a virtual river. PhD thesis, University of Geneva (June 2002),
  17. 17.
    Masselot, A., Chopard, B.: Europhys. Lett. 42, 259 (1998), Chopard, B., Masselot, A., Dupuis, A.: Comp. Phys. Comm. 129, 167 (2002)Google Scholar
  18. 18.
    Graf, W.: Hydraulics of sediment transport. McGraw-Hill, New York (1971)Google Scholar
  19. 19.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21, 1087 (1953)Google Scholar
  20. 20.
    The quantity β e refers to the granular material selected and indirectly measure its degree of packing and internal cohesion. In the present study we assume β e= 1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Sguanci
    • 1
  • Franco Bagnoli
    • 1
  • Duccio Fanelli
    • 1
  1. 1.Dept. EnergyUniv. of FlorenceFirenzeItaly

Personalised recommendations