The Influence of Risk Perception in Epidemics: A Cellular Agent Model

  • Luca Sguanci
  • Pietro Liò
  • Franco Bagnoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


Our work stems from the consideration that the spreading of a disease is modulated by the individual’s perception of the infected neighborhood and his/her strategy to avoid being infected as well. We introduced a general “cellular agent” model that accounts for a heterogeneous and variable network of connections. The probability of infection is assumed to depend on the perception that an individual has about the spreading of the disease in her local neighborhood and on broadcasting media. In the one-dimensional homogeneous case the model reduces to the DK one, while for long-range coupling the dynamics exhibits large fluctuations that may lead to the complete extinction of the disease.


Risk Perception Cellular Automaton Infected Individual Cellular Agent Infected Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bloch, M.: The Royal Touch: Monarchy and Miracles in France and England. Dorset Press, New York (1990)Google Scholar
  2. 2.
    Liljeros, F., Edling, C.R., Nunes, L.A.: Amaral Sexual networks: implications for the transmission of sexually transmitted. Infections Microbes and Infection 5, 189–196 (2003)CrossRefGoogle Scholar
  3. 3.
    Schliekelman, P., Garner, C., Slatkin, M.: Nature 411, 545 (2001)Google Scholar
  4. 4.
    Novembre, J., Galvani, A.P., Slatkin, M.: PLoS Biol. 3, 339 (2005)Google Scholar
  5. 5.
    Zanotto, P.M., Gould, E.A., Gao, G.F., Harvey, P.H., Holmes, E.C.: Population dynamics of flaviviruses revealed by molecular phylogenies. Proc. Natl. Acad. Sci. USA. 93, 548 (1996)CrossRefGoogle Scholar
  6. 6.
    Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M.: Nature 438, 355 (2005)Google Scholar
  7. 7.
    Murray, J.D.: Mathematical biology. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  8. 8.
    Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford Univ. Press, Oxford (1991)Google Scholar
  9. 9.
    Pastor-Satorras, R., Vespignani, A.: Phys. Rev. Lett. 86, 3200 (2001); Pastor-Satorras, R., Vespignani, A.: Phys. Rev. E 63, 066117 (2001); Lloyd, A.L., May, R.M.: Science 292, 1316 (2001)Google Scholar
  10. 10.
    Barabasi, A.L., Albert, R.: Science 286, 509 (1999); Albert, R., Barabasi, A.L.: Rev. Mod. Phys. 74, 47 (2002); Boccaletti, S., Latora, V., Moreno, Y.: Chavez, M., Hwang, D.U.: Phys. Rep. 424, 175 (2006)Google Scholar
  11. 11.
    Bagnoli, F., Lió, P., Sguanci, L.: Physica A Corrected Proof, Available online November 28, 2005 (in press)Google Scholar
  12. 12.
    Domany, E., Kinzel, W.: Phys. Rev. Lett. 53, 311 (1984)Google Scholar
  13. 13.
    Longini, I.M., Nizam, A., Xu, S., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A.T., Halloran, E.M.: Science 309, 1083 (2005)Google Scholar
  14. 14.
    Germann, T.C., Kadau, K., Longini, I.M., Macken, C.A.: Proc. Natl. Acad. Sc. USA.  103, 15 (2006)Google Scholar
  15. 15.
    Glass, K., Kappey, K., Grenfell, B.T.: Epidemiol Infect.  132, 675 (2004)Google Scholar
  16. 16.
    Brownstein, J.S., Kleinman, K.P., Mandl, K.D.: Amer. J. Epidemiol. 162, 686 (2005)CrossRefGoogle Scholar
  17. 17.
    Aldous, M.B.: AAP Grand Rounds 15, 6 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Sguanci
    • 1
  • Pietro Liò
    • 2
  • Franco Bagnoli
    • 1
  1. 1.Dept. EnergyUniv. of FlorenceFirenzeItaly
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations