Qualitative and Quantitative Cellular Automata from Differential Equations

  • Philippe Narbel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

We give a synthetic and formalized account of relationships between cellular automata (CA) and differential equations (DE): Numerical schemes and phase portraits analysis (via cell-to-cell mappings) can be translated into CA, and compositions of differential operators and phase portraits induce CA compositions. Based on DE, CA can be tuned according to discretization parameters so that faithful CA sequences can be built describing qualitative as well as quantitative solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames, W.F.: Numerical Methods for Partial Differential Equations, 2nd edn. Academic Press, London (1977)MATHGoogle Scholar
  2. 2.
    Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70 (1991)CrossRefGoogle Scholar
  3. 3.
    Choppard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  4. 4.
    Chueh, K., Conley, C., Smoller, J.: Positively invariant regions for systems of nonlinear parabolic equations. Indiana Univ. Math. J. 26, 373–392 (1977)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Delorme, M., Mazoyer, J.: Cellular Automata, A Parallel Model. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  6. 6.
    Gerhardt, M., Schuster, H., Tyson, J.J.: Cellular automaton model of excitable media II & III. Physica D 46, 392–426 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Greenberg, J.M., Hassard, B.D., Hastings, S.P.: Pattern formation and periodic structures in systems modeled by reaction-diffusion equations. Bull. of the AMS 6, 1296–1327 (1978)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grindrod, P.: Patterns and Waves. Clarendon Press, Oxford (1991)MATHGoogle Scholar
  9. 9.
    Hsu, C.S.: Cell-to-Cell Mapping, A Method of Global Analysis for Nonlinear Systems. Springer, Heidelberg (1987)MATHGoogle Scholar
  10. 10.
    Hubbard, J.H., West, B.H.: Differential Equations. A Dynamical System Approach. Parts I and II. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Keener, J.P.: A geometrical theory for spiral waves in excitable media. SIAM Journ. Appl. Math. 46(6), 1039–1056 (1986)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kuipers, B.: Qualitative Reasoning. MIT Press, Cambridge (1994)Google Scholar
  13. 13.
    Kuptsov, P.V., Kuznetsov, S.P., Mosekilde, E.: Particle in the Brusselator model with flow. Physica D 163, 80–88 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1993)MATHCrossRefGoogle Scholar
  15. 15.
    Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, Amsterdam (1987)MATHGoogle Scholar
  16. 16.
    Rauch, J., Smoller, J.: Qualitative theory of the Fitzhugh-Nagumo equations. Adv. in Math. 27, 12–44 (1978)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shadwick, B., Bowman, J., Morrison, P.: Exactly conservative integrators. SIAM J. Appl. Math. 59 (1999)Google Scholar
  18. 18.
    Sherratt, J.A.: Periodic travelling waves in a family of deterministic cellular automata. Physica D 95, 319–335 (1996)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)MATHCrossRefGoogle Scholar
  20. 20.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: a New Environment for Modeling. MIT Press, Cambridge (1987)Google Scholar
  21. 21.
    Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Physic. Rev. Let. 76(18), 3247–3250 (1996)CrossRefGoogle Scholar
  22. 22.
    Tyson, J.: Singular perturbation theory of traveling waves in excitable media. Physica D 32, 327–361 (1988)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Weimar, J.R.: Simulation with Cellular Automata. Logos-Verlag, Berlin (1998)Google Scholar
  24. 24.
    Weimar, J.R., Boon, J.P.: Class of cellular automata for reaction-diffusion systems. Physical Review E 49(2), 1749–1751 (1994)CrossRefGoogle Scholar
  25. 25.
    Wolfram, S.: Twenty problems in the theory of cellular automata. In: Physica Scripta Proceedings of the 59th Nobel Symposium, pp. 170–183 (1985)Google Scholar
  26. 26.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc. (2002)Google Scholar
  27. 27.
    Yanenko, N.N.: The Method of Fractional Steps. Springer, Heidelberg (1971)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philippe Narbel
    • 1
  1. 1.LaBRIUniversity of Bordeaux 1France

Personalised recommendations