Qualitative and Quantitative Cellular Automata from Differential Equations

  • Philippe Narbel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)


We give a synthetic and formalized account of relationships between cellular automata (CA) and differential equations (DE): Numerical schemes and phase portraits analysis (via cell-to-cell mappings) can be translated into CA, and compositions of differential operators and phase portraits induce CA compositions. Based on DE, CA can be tuned according to discretization parameters so that faithful CA sequences can be built describing qualitative as well as quantitative solutions.


Cellular Automaton Phase Portrait Cellular Automaton Excitable Medium Invariant Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, W.F.: Numerical Methods for Partial Differential Equations, 2nd edn. Academic Press, London (1977)zbMATHGoogle Scholar
  2. 2.
    Barkley, D.: A model for fast computer simulation of waves in excitable media. Physica D 49, 61–70 (1991)CrossRefGoogle Scholar
  3. 3.
    Choppard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  4. 4.
    Chueh, K., Conley, C., Smoller, J.: Positively invariant regions for systems of nonlinear parabolic equations. Indiana Univ. Math. J. 26, 373–392 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Delorme, M., Mazoyer, J.: Cellular Automata, A Parallel Model. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  6. 6.
    Gerhardt, M., Schuster, H., Tyson, J.J.: Cellular automaton model of excitable media II & III. Physica D 46, 392–426 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Greenberg, J.M., Hassard, B.D., Hastings, S.P.: Pattern formation and periodic structures in systems modeled by reaction-diffusion equations. Bull. of the AMS 6, 1296–1327 (1978)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grindrod, P.: Patterns and Waves. Clarendon Press, Oxford (1991)zbMATHGoogle Scholar
  9. 9.
    Hsu, C.S.: Cell-to-Cell Mapping, A Method of Global Analysis for Nonlinear Systems. Springer, Heidelberg (1987)zbMATHGoogle Scholar
  10. 10.
    Hubbard, J.H., West, B.H.: Differential Equations. A Dynamical System Approach. Parts I and II. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Keener, J.P.: A geometrical theory for spiral waves in excitable media. SIAM Journ. Appl. Math. 46(6), 1039–1056 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kuipers, B.: Qualitative Reasoning. MIT Press, Cambridge (1994)Google Scholar
  13. 13.
    Kuptsov, P.V., Kuznetsov, S.P., Mosekilde, E.: Particle in the Brusselator model with flow. Physica D 163, 80–88 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Murray, J.D.: Mathematical Biology. Springer, Heidelberg (1993)zbMATHCrossRefGoogle Scholar
  15. 15.
    Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, Amsterdam (1987)zbMATHGoogle Scholar
  16. 16.
    Rauch, J., Smoller, J.: Qualitative theory of the Fitzhugh-Nagumo equations. Adv. in Math. 27, 12–44 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shadwick, B., Bowman, J., Morrison, P.: Exactly conservative integrators. SIAM J. Appl. Math. 59 (1999)Google Scholar
  18. 18.
    Sherratt, J.A.: Periodic travelling waves in a family of deterministic cellular automata. Physica D 95, 319–335 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004)zbMATHCrossRefGoogle Scholar
  20. 20.
    Toffoli, T., Margolus, N.: Cellular Automata Machines: a New Environment for Modeling. MIT Press, Cambridge (1987)Google Scholar
  21. 21.
    Tokihiro, T., Takahashi, D., Matsukidaira, J., Satsuma, J.: From soliton equations to integrable cellular automata through a limiting procedure. Physic. Rev. Let. 76(18), 3247–3250 (1996)CrossRefGoogle Scholar
  22. 22.
    Tyson, J.: Singular perturbation theory of traveling waves in excitable media. Physica D 32, 327–361 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Weimar, J.R.: Simulation with Cellular Automata. Logos-Verlag, Berlin (1998)Google Scholar
  24. 24.
    Weimar, J.R., Boon, J.P.: Class of cellular automata for reaction-diffusion systems. Physical Review E 49(2), 1749–1751 (1994)CrossRefGoogle Scholar
  25. 25.
    Wolfram, S.: Twenty problems in the theory of cellular automata. In: Physica Scripta Proceedings of the 59th Nobel Symposium, pp. 170–183 (1985)Google Scholar
  26. 26.
    Wolfram, S.: A New Kind of Science. Wolfram Media Inc. (2002)Google Scholar
  27. 27.
    Yanenko, N.N.: The Method of Fractional Steps. Springer, Heidelberg (1971)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philippe Narbel
    • 1
  1. 1.LaBRIUniversity of Bordeaux 1France

Personalised recommendations