Merging Cellular Automata for Simulating Surface Effects

  • Stéphane Gobron
  • Denis Finck
  • Philippe Even
  • Bertrand Kerautret
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4173)

Abstract

This paper describes a model of three-dimensional cellular automata allowing to simulate different phenomena in the fields of computer graphics or image processing. Our method allows to combine them together in order to produce complex effects such as automatic texturing, surface imperfections, or biological retina multi-layer cellular behaviours. Our cellular automaton model is defined as a network of connected cells arranged in a natural and dynamic way, which affords multi-behavior capabilities. Based on cheap and widespread computing systems, real-time performance can be reached for simulations involving up to a hundred thousand cells. The efficiency of such an approach is illustrated by a set of CA related to computer graphics –e.g. erosion, sedimentation, or vegetal growing processes– and image analysis –e.g. retina simulation.

Keywords

cellular automata geometric modeling image processing environmental and biological systems surface effects fluid simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Curtis, C.J., Anderson, S.E., Seims, J.E., Fleischery, K.W., Salesin, D.H.: Computer-generated watercolor. In: SIGGRAPH 1997 Conf. Proc., vol. 24, pp. 225–232 (1997)Google Scholar
  2. 2.
    de Berg, M., Schwarzkopf, O., van Kerveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (1998)Google Scholar
  3. 3.
    Devillard, F., Gobron, S., Grandidier, F., Heit, B.: Implémentation par automates cellulaires d’une modélisation architecturale de rétine biologique. In: READ 2005, Institut National des Télécommunications, Evry, France, June 1-3 (2005)Google Scholar
  4. 4.
    Druon, S., Crosnier, A., Brigandat, L.: Efficient cellular automaton for 2d / 3d free-form modeling. Journal of WSCG 11 (2003) (1, ISSN 1213-6972)Google Scholar
  5. 5.
    Duchting, W.: Tumor growth simulation. Computers and Graphics 14(3/4), 505–508 (1990)Google Scholar
  6. 6.
    Even, P., Gobron, S.: Interactive three-dimensional reconstruction and weathering simulations on buildings. In: CIPA 2005 XXth International Symposium, Turin, Italy, pp. 796–801 (2005)Google Scholar
  7. 7.
    Gerhardt, M., Schuster, H., Tyson, J.J.: A cellular automaton model of excitable media including curvature and dispersion. Science 247, 1563–1566 (1990)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gobron, S., Chiba, N.: 3D surface cellular automata and their applications. The Journal of Visualization and Computer Animation 10, 143–158 (1999)CrossRefGoogle Scholar
  9. 9.
    Gobron, S., Devillard, F., Heit, B.: Real-time contour restoration and segmentation using cellular automaton and GPU programming (in reviewing process) (2006)Google Scholar
  10. 10.
    Gobron, S., Finck, D.: Generating surface textures based on cellular networks. In: The Geometric Modeling and Imaging international conference (GMAI 2006), IEEE Computer Society Press, Los Alamitos (2006)Google Scholar
  11. 11.
    Harris, M.: Implementation of a CML boiling simulation using graphics hardware. In CS. Dept, UNCCH, Tech. Report, vol. 02-016 (2003)Google Scholar
  12. 12.
    Harris, M., Coombe, G., Scheueermann, T., Lastra, A.: Physically-based visual simulation on graphics hardware. Graphics Hardware, 1–10 (2002)Google Scholar
  13. 13.
    Li, W.: Complex patterns generated by next nearest neighbors cellular automata. Computers and Graphics 13(4), 531–537 (1989)CrossRefGoogle Scholar
  14. 14.
    Makkuni, R.: Pixelated structures as a compositional medium. The Visual Computer 2(4), 243–254 (1986)CrossRefGoogle Scholar
  15. 15.
    Mason, W.K.: Art from cellular automata and symmetrized dot-patterns. Computers and Graphics 16(4), 439–442 (1992)CrossRefGoogle Scholar
  16. 16.
    Reynolds, C.: Flocks, herds, and schools: A distributed behavioral model. In: ACM Computer Graphics Conf. Proc., vol. 21(4), pp. 25–33 (July 1987)Google Scholar
  17. 17.
    Thalmann, D.: A lifegame approach to surface modeling and rendering. The Visual Computer 2, 384–390 (1986)MATHCrossRefGoogle Scholar
  18. 18.
    Tran, J., Jordan, D., Luebke, D.: New challenges for cellular automata simulation on the GPU (2003), http://www.cs.virginia.edu
  19. 19.
    Turk, G.: Generating texture for arbitrary surfaces using reaction-diffusion. In: SIGGRAPH 1991 Conf. Proc., vol. 25, pp. 289–298 (1991)Google Scholar
  20. 20.
    Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., Shum, H.-Y.: View-dependent displacement mapping. In: SIGGRAPH 2003 Conf. Proc., vol. 22, pp. 334–339 (2003)Google Scholar
  21. 21.
    Witkin, A., Kass, M.: Reaction-diffusion textures. In: SIGGRAPH 1991 Conf. Proc, pp. 299–308 (1991)Google Scholar
  22. 22.
    Wolfram, S.: A new kind of science, 1st edn. Wolfram Media Inc. (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stéphane Gobron
    • 1
  • Denis Finck
    • 1
  • Philippe Even
    • 2
  • Bertrand Kerautret
    • 2
  1. 1.Université Henri Poincaré, IUT de St Dié 
  2. 2.LORIA/ADAGIoUniversité Henri Poincaré, IUT de St DiéSaint-Dié-des-VosgesFrance

Personalised recommendations