Automated Reasoning About Metric and Topology
Abstract
In this paper we compare two approaches to automated reasoning about metric and topology in the framework of the logic \(\mathcal{MT}\) introduced in [10]. \(\mathcal{MT}\)-formulas are built from set variablesp 1,p 2,... (for arbitrary subsets of a metric space) using the Booleans ∧, ∨, →, and ¬, the distance operators∃ < a and ∃ ≤ a , for \(a\in {\mathbb Q}^{> 0}\), and the topological interior and closure operators I and C. Intended models for this logic are of the form \(\mathfrak I=(\Delta,d,p_{1}^{\mathfrak I},p_{2}^{\mathfrak I},\dots)\) where (Δ,d) is a metric space and \(p_{i}^{\mathfrak I} \subseteq \Delta\). The extension \(\varphi^{\mathfrak I} \subseteq \Delta\) of an \(\mathcal{MT}\)-formula ϕ in \(\mathfrak I\) is defined inductively in the usual way, with I and C being interpreted as the interior and closure operators induced by the metric, and \((\exists^{<a}\varphi)^{\mathfrak I} = \{ x \in \Delta \mid \exists y\in \varphi^{\mathfrak I}\ d(x,y)<a \}\). In other words, \((\mathbf{I}\varphi)^{\mathfrak I}\) is the interior of \(\varphi^{\mathfrak I}\), \((\exists^{<a}\varphi)^{\mathfrak I}\) is the open a-neighbourhood of \(\varphi^{\mathfrak I}\), and \((\exists^{\le a}\varphi)^{\mathfrak I}\) is the closed one. A formula ϕ is satisfiable if there is a model \({\mathfrak I}\) such that \(\varphi^{\mathfrak I} \ne \emptyset\); ϕ is valid if ¬ϕ is not satisfiable.
Keywords
Modal Logic Closure Operator Automate Reasoning Distance Operator Hybrid LogicPreview
Unable to display preview. Download preview PDF.
References
- 1.Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. International Journal of Artificial Intelligence Tools 15(1) (2005)Google Scholar
- 2.Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 38–52. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 3.Letz, R., Stenz, G.: DCTP - A disconnection calculus theorem prover - system abstract. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 381–385. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 4.Ohlbach, H.J., Nonnengart, A., de Rijke, M., Gabbay, D.M.: Encoding two-valued nonclassical logics in classical logic. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 1403–1485. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
- 5.Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Comm. 15(2-3), 91–110 (2002)zbMATHGoogle Scholar
- 6.Schmidt, R.A., Hustadt, U.: A principle for incorporating axioms into the first-order translation of modal formulae. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 412–426. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 7.Schulz, S.: E: A Brainiac theorem prover. AI Comm. 15(2/3), 111–126 (2002)zbMATHGoogle Scholar
- 8.Weidenbach, C., Brahm, U., Hillenbrand, T., Keen, E., Theobald, C., Topic, D.: SPASS version 2.0. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 275–279. Springer, Heidelberg (2002)Google Scholar
- 9.Wolter, F., Zakharyaschev, M.: Reasoning about distances. In: Proc. of IJCAI 2003, pp. 1275–1280. Morgan Kaufmann, San Francisco (2003)Google Scholar
- 10.Wolter, F., Zakharyaschev, M.: A logic for metric and topology. Journal of Symbolic Logic 70, 795–828 (2005)zbMATHCrossRefMathSciNetGoogle Scholar