April – An Inductive Logic Programming System

  • Nuno A. Fonseca
  • Fernando Silva
  • Rui Camacho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


Inductive Logic Programming (ILP) is a Machine Learning research field that has been quite successful in knowledge discovery in relational domains. ILP systems use a set of pre-classified examples (positive and negative) and prior knowledge to learn a theory in which positive examples succeed and the negative examples fail. In this paper we present a novel ILP system called April, capable of exploring several parallel strategies in distributed and shared memory machines.


Association Rule Inductive Logic Inductive Logic Programming Average Execution Time Machine Learn Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Costa, V.S., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B., Janssens, G., Struyf, J., Vandecasteele, H., Van Laer, W.: Query transformations for improving the efficiency of ilp systems. Journal of Machine Learning Research 4, 465–491 (2003)CrossRefGoogle Scholar
  2. 2.
    Železný, F., Srinivasan, A., Page, D.L.: Lattice-search runtime distributions may be heavy-tailed. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 333–345. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Cussens, J.: Part-of-speech disambiguation using ilp. Technical Report PRG-TR-25-96, Oxford University Computing Laboratory (1996)Google Scholar
  4. 4.
    Camacho, R.: As lazy as it can be. In: The Eighth Scandinavian Conference on Artificial Intelligence (SCAI 2003), Bergen, Norway, pp. 47–58 (November 2003)Google Scholar
  5. 5.
    Rocha, R., Fonseca, N.A., Santos Costa, V.: On Applying Tabling to Inductive Logic Programming. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 707–714. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Fonseca, N.A., Silva, F., Santos Costa, V., Camacho, R.: A pipelined data-parallel algorithm for ILP. In: Proceedings of 2005 IEEE International Conference on Cluster Computing. IEEE, Los Alamitos (2005)Google Scholar
  7. 7.
    Fonseca, N.A., Silva, F., Camacho, R.: Strategies to parallelize ILP systems. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995)Google Scholar
  9. 9.
    Dehaspe, L., Toironen, H.: Relational Data Mining. In: Discovery of relational association rules, pp. 189–208. Springer, Heidelberg (2000)Google Scholar
  10. 10.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19/20, 629–679 (1994)CrossRefGoogle Scholar
  11. 11.
    Davies, T., Russell, S.: A logical approach to reasoning by analogy. In: Proceedings of the 10th International Joint Conference on Artificial Intelligence, Los Altos, California, pp. 264–270 (1987)Google Scholar
  12. 12.
    Srinivasan, A.: The Aleph Manual (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nuno A. Fonseca
    • 1
  • Fernando Silva
    • 1
  • Rui Camacho
    • 2
  1. 1.DCC-FC & LIACCUniversidade do Porto 
  2. 2.Faculdade de Engenharia & LIACCUniversidade do Porto 

Personalised recommendations