Fuzzy Answer Set Programming

  • Davy Van Nieuwenborgh
  • Martine De Cock
  • Dirk Vermeir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4160)


In this paper we show how the concepts of answer set programming and fuzzy logic can be succesfully combined into the single framework of fuzzy answer set programming (FASP). The framework offers the best of both worlds: from the answer set semantics, it inherits the truly declarative non-monotonic reasoning capabilities while, on the other hand, the notions from fuzzy logic in the framework allow it to step away from the sharp principles used in classical logic, e.g., that something is either completely true or completely false. As fuzzy logic gives the user great flexibility regarding the choice for the interpretation of the notions of negation, conjunction, disjunction and implication, the FASP framework is highly configurable and can, e.g., be tailored to any specific area of application. Finally, the presented framework turns out to be a proper extension of classical answer set programming, as we show, in contrast to other proposals in the literature, that there are only minor restrictions one has to demand on the fuzzy operations used, in order to be able to retrieve the classical semantics using FASP.


Fuzzy Logic Logic Program Minimal Model Logic Programming Satisfaction Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alsinet, T., Godo, L., Sandri, S.: Two formalisms of extended possibilistic logic programming with context-dependent fuzzy unification: a comparative description. Electronic Notes in Theoretical Computer Science 66(5) (2002)Google Scholar
  2. 2.
    Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: Proceedings of the International Symposium on Logical Formalization of Commonsense Reasoning. AAAI 2003 Spring Symposium Series (2003)Google Scholar
  3. 3.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Birkhoff, G.: Lattice theory. American Mathematical Society Colloquium Publications 25(3) (1967)Google Scholar
  5. 5.
    Brewka, G.: Logic programming with ordered disjunction. In: Proceedings of the 18th National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence, pp. 100–105. AAAI Press, Menlo Park (2002)Google Scholar
  6. 6.
    Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artificial Intelligence 109(1-2), 297–356 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive datalog. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 2–17. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Damasio, C., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: termination results and applications. Journal of Applied Logic (to appear, 2006)Google Scholar
  9. 9.
    Damasio, C.V., Pereira, L.M.: Sorted monotonic logic programs and their embedding. In: Proc. of the 10th Intl. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 807–814 (2004)Google Scholar
  10. 10.
    De Vos, M., Vermeir, D.: On the role of negation in choice logic programs. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 236–246. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems 144(1), 3–23 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the dlv system. AI Communications 12(1-2), 99–111 (1999)MathSciNetGoogle Scholar
  13. 13.
    Gabbay, D., Laenens, E., Vermeir, D.: Credulous vs. Sceptical Semantics for Ordered Logic Programs. In: Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning, pp. 208–217. Morgan Kaufmann, San Francisco (1991)Google Scholar
  14. 14.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, August 1988, pp. 1070–1080. The MIT Press, Cambridge (1988)Google Scholar
  15. 15.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3-4), 365–386 (1991)CrossRefGoogle Scholar
  16. 16.
    Dix, J., Kuter, U., Nau, D.S.: Planning in answer set programming using ordered task decomposition. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 490–504. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Mateis, C.: Extending disjunctive logic programming by t-norms. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 290–304. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Nicolas, P., Garcia, L., Stéphan, I.: Possibilistic stable models. In: Proc. of the 19th Intl. Joint Conf. on Artificial Intelligence, pp. 248–253 (2005)Google Scholar
  19. 19.
    Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision support system for the space shuttle. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 169–183. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  21. 21.
    Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product configuration. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp. 305–319. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Straccia, U.: Annotated answer set programming. In: Proc. of the 11th Intl. Conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006) (2006)Google Scholar
  23. 23.
    van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the Association for Computing Machinery 38(3), 620–650 (1991)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Van Nieuwenborgh, D., Vermeir, D.: Preferred answer sets for ordered logic programs. Theory and Practice of Logic Programming 6(1-2), 107–167 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wagner, G.: A logical reconstruction of fuzzy inference in databases and logic programs. In: Proceedings of the International Fuzzy Set Association World Congress (IFSA 1997) (1997)Google Scholar
  26. 26.
    Zadeh, L.: Fuzzy logic and approximate reasoning. Synthese 30, 407–428 (1975)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Davy Van Nieuwenborgh
    • 1
  • Martine De Cock
    • 2
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit Brussel, VUBBrusselsBelgium
  2. 2.Dept. of Applied Mathematics and Computer ScienceUniversiteit Gent, UGentGhentBelgium

Personalised recommendations