Practical Metropolitan-Scale Positioning for GSM Phones

  • Mike Y. Chen
  • Timothy Sohn
  • Dmitri Chmelev
  • Dirk Haehnel
  • Jeffrey Hightower
  • Jeff Hughes
  • Anthony LaMarca
  • Fred Potter
  • Ian Smith
  • Alex Varshavsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4206)

Abstract

This paper examines the positioning accuracy of a GSM beacon-based location system in a metropolitan environment. We explore five factors effecting positioning accuracy: location algorithm choice, scan set size, simultaneous use of cells from different providers, training and testing on different devices, and calibration data density. We collected a 208-hour, 4350Km driving trace of three different GSM networks covering the Seattle metropolitan area. We show a median error of 94m in downtown and 196m in residential areas using a single GSM network and the best algorithm for each area. Estimating location using multiple providers’ cells reduces median error to 65-134 meters and 95% error to 163m in the downtown area, which meets the accuracy requirements for E911. We also show that a small 60-hour calibration drive is sufficient for enabling a metropolitan area similar to Seattle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Non-Linear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50(2), 174–188 (2002)CrossRefGoogle Scholar
  2. 2.
    Ashbrook, D., Starner, T.: Using GPS to Learn Significant Locations and Predict Movement across Multiple Users. Personal and Ubiquitous Computing 7, 275–286 (2003)CrossRefGoogle Scholar
  3. 3.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Tracking System. In: Proceedings of IEEE INFOCOM 2000, vol. 2, pp. 775–784 (2000)Google Scholar
  4. 4.
    Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy Characterization for Metropolitan-scale WiFi Localization. In: Proceedings of Mobisys 2005 (2005)Google Scholar
  5. 5.
    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte Carlo localization: Efficient Position Estimation for Mobile Robots. In: Proceedings of AAAI (1999)Google Scholar
  6. 6.
    Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.: Practical Robust Localization over Large-scale 802.11 Wireless Networks. In: Proceedings of Mobicom (2004)Google Scholar
  7. 7.
    Hightower, J., et al.: Learning and recognizing the places we go. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 159–176. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Laasonen, K., Raento, M., Toivonen, H.: Adaptive On-device Location Recognition. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 287–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    LaMarca, A., et al.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Laitinen, H., Lahteenmaki, J., Nordstrom, T.: Database correlation method for GSM location. In: IEEE 53rd Vehicular Technology Conference (2001)Google Scholar
  11. 11.
    Letchner, J., Fox, D., LaMarca, A.: Large-Scale Localization from Wireless Signal Strength. In: Proceedings of the National Conference on Artificial Intelligence (AAAI 2005) (2005)Google Scholar
  12. 12.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM indoor localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Privacy-Observant Location System, http://pols.sourceforge.net/
  14. 14.
    Schwaighofer, A., Grigoras, M., Tresp, V., Hoffmann, C.: GPPS: A Gaussian Process Positioning System for Cellular Networks. In: Proceedings of NIPS 2003 (2003)Google Scholar
  15. 15.
    Trevisani, E., Vitaletti, A.: Cell-ID Location Technique, Limits and Benefits: An Experimental Study. In: Proceedings of WMCSA 2004, pp. 51–60 (2004)Google Scholar
  16. 16.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of Mobicom 2000, pp. 32–43 (2000)Google Scholar
  17. 17.
    Want, R., Hopper, A., Falco, V., Gibbons, J.: The Active Badge Location System. ACM Transactions on Information Systems 10(1), 91–102 (1992)CrossRefGoogle Scholar
  18. 18.
    Addlesee, M.D., Jones, A., Livesey, F., Samaria, F.: The ORL Active Floor. IEEE Personal Communications 4(5), 35–41 (1997)CrossRefGoogle Scholar
  19. 19.
    Sohn, T., et al.: Place-its: A study of location-based reminders on mobile phones. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 232–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Smith, I., et al.: Social disclosure of place: From location technology to communication practices. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 134–151. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Sinnott, R.W.: Virtues of the Haversine. Sky and Telescope 68(2), 159 (1984)MathSciNetGoogle Scholar
  22. 22.
    Computer Industry Almanac Press Release. Mobile PCs In-Use Surpass 200M (June 2005), http://www.c-i-a.com/pr0605.htm
  23. 23.
    Computer Industry Almanac Press Release. Worldwide Internet Users will Top 1 Billion in 2005 (September 2004), http://www.c-i-a.com/pr0904.htm
  24. 24.
    GSM Association Press Release. Worldwide cellular connections exceeds 2 billion (September 2005), http://www.gsmworld.com/news/press_2005/press05_21.shtml
  25. 25.
    Microsoft Virtual Earth, http://virtualearth.msn.com
  26. 26.
    Series 60 Phone Platform, http://s60.com
  27. 27.
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mike Y. Chen
    • 1
  • Timothy Sohn
    • 2
  • Dmitri Chmelev
    • 3
  • Dirk Haehnel
    • 1
  • Jeffrey Hightower
    • 1
  • Jeff Hughes
    • 3
  • Anthony LaMarca
    • 1
  • Fred Potter
    • 3
  • Ian Smith
    • 1
  • Alex Varshavsky
    • 4
  1. 1.Intel Research SeattleUSA
  2. 2.University of California at San DiegoUSA
  3. 3.University of WashingtonUSA
  4. 4.University of TorontoCanada

Personalised recommendations