Practical Metropolitan-Scale Positioning for GSM Phones

  • Mike Y. Chen
  • Timothy Sohn
  • Dmitri Chmelev
  • Dirk Haehnel
  • Jeffrey Hightower
  • Jeff Hughes
  • Anthony LaMarca
  • Fred Potter
  • Ian Smith
  • Alex Varshavsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4206)


This paper examines the positioning accuracy of a GSM beacon-based location system in a metropolitan environment. We explore five factors effecting positioning accuracy: location algorithm choice, scan set size, simultaneous use of cells from different providers, training and testing on different devices, and calibration data density. We collected a 208-hour, 4350Km driving trace of three different GSM networks covering the Seattle metropolitan area. We show a median error of 94m in downtown and 196m in residential areas using a single GSM network and the best algorithm for each area. Estimating location using multiple providers’ cells reduces median error to 65-134 meters and 95% error to 163m in the downtown area, which meets the accuracy requirements for E911. We also show that a small 60-hour calibration drive is sufficient for enabling a metropolitan area similar to Seattle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Non-Linear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50(2), 174–188 (2002)CrossRefGoogle Scholar
  2. 2.
    Ashbrook, D., Starner, T.: Using GPS to Learn Significant Locations and Predict Movement across Multiple Users. Personal and Ubiquitous Computing 7, 275–286 (2003)CrossRefGoogle Scholar
  3. 3.
    Bahl, P., Padmanabhan, V.N.: RADAR: An In-Building RF-Based User Location and Tracking System. In: Proceedings of IEEE INFOCOM 2000, vol. 2, pp. 775–784 (2000)Google Scholar
  4. 4.
    Cheng, Y., Chawathe, Y., LaMarca, A., Krumm, J.: Accuracy Characterization for Metropolitan-scale WiFi Localization. In: Proceedings of Mobisys 2005 (2005)Google Scholar
  5. 5.
    Fox, D., Burgard, W., Dellaert, F., Thrun, S.: Monte Carlo localization: Efficient Position Estimation for Mobile Robots. In: Proceedings of AAAI (1999)Google Scholar
  6. 6.
    Haeberlen, A., Flannery, E., Ladd, A.M., Rudys, A., Wallach, D.S., Kavraki, L.E.: Practical Robust Localization over Large-scale 802.11 Wireless Networks. In: Proceedings of Mobicom (2004)Google Scholar
  7. 7.
    Hightower, J., et al.: Learning and recognizing the places we go. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 159–176. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Laasonen, K., Raento, M., Toivonen, H.: Adaptive On-device Location Recognition. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 287–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    LaMarca, A., et al.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Laitinen, H., Lahteenmaki, J., Nordstrom, T.: Database correlation method for GSM location. In: IEEE 53rd Vehicular Technology Conference (2001)Google Scholar
  11. 11.
    Letchner, J., Fox, D., LaMarca, A.: Large-Scale Localization from Wireless Signal Strength. In: Proceedings of the National Conference on Artificial Intelligence (AAAI 2005) (2005)Google Scholar
  12. 12.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM indoor localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Privacy-Observant Location System,
  14. 14.
    Schwaighofer, A., Grigoras, M., Tresp, V., Hoffmann, C.: GPPS: A Gaussian Process Positioning System for Cellular Networks. In: Proceedings of NIPS 2003 (2003)Google Scholar
  15. 15.
    Trevisani, E., Vitaletti, A.: Cell-ID Location Technique, Limits and Benefits: An Experimental Study. In: Proceedings of WMCSA 2004, pp. 51–60 (2004)Google Scholar
  16. 16.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of Mobicom 2000, pp. 32–43 (2000)Google Scholar
  17. 17.
    Want, R., Hopper, A., Falco, V., Gibbons, J.: The Active Badge Location System. ACM Transactions on Information Systems 10(1), 91–102 (1992)CrossRefGoogle Scholar
  18. 18.
    Addlesee, M.D., Jones, A., Livesey, F., Samaria, F.: The ORL Active Floor. IEEE Personal Communications 4(5), 35–41 (1997)CrossRefGoogle Scholar
  19. 19.
    Sohn, T., et al.: Place-its: A study of location-based reminders on mobile phones. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 232–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Smith, I., et al.: Social disclosure of place: From location technology to communication practices. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 134–151. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Sinnott, R.W.: Virtues of the Haversine. Sky and Telescope 68(2), 159 (1984)MathSciNetGoogle Scholar
  22. 22.
    Computer Industry Almanac Press Release. Mobile PCs In-Use Surpass 200M (June 2005),
  23. 23.
    Computer Industry Almanac Press Release. Worldwide Internet Users will Top 1 Billion in 2005 (September 2004),
  24. 24.
    GSM Association Press Release. Worldwide cellular connections exceeds 2 billion (September 2005),
  25. 25.
    Microsoft Virtual Earth,
  26. 26.
    Series 60 Phone Platform,
  27. 27.
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mike Y. Chen
    • 1
  • Timothy Sohn
    • 2
  • Dmitri Chmelev
    • 3
  • Dirk Haehnel
    • 1
  • Jeffrey Hightower
    • 1
  • Jeff Hughes
    • 3
  • Anthony LaMarca
    • 1
  • Fred Potter
    • 3
  • Ian Smith
    • 1
  • Alex Varshavsky
    • 4
  1. 1.Intel Research SeattleUSA
  2. 2.University of California at San DiegoUSA
  3. 3.University of WashingtonUSA
  4. 4.University of TorontoCanada

Personalised recommendations