Practice of Inductive Reasoning on the Semantic Web: A System for Semantic Web Mining

  • Francesca A. Lisi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4187)


Mining the layers of ontologies and rules provides an interesting testbed for inductive reasoning on the Semantic Web. Systems based on Inductive Logic Programming (ILP) could serve the purpose if they were more compliant with the standards of representation for ontologies and rules in the Semantic Web and/or interoperable with well-established tools for Ontological Engineering (OE) that support these standards. In this paper we present a middleware, \(\mathcal{SW}\textsc{ing}\), that integrates the ILP system \(\mathcal{AL}\)-QuIn and the OE tool Protégé-2000 in order to enable Semantic Web Mining applications of \(\mathcal{AL}\)-QuIn. This showcase highlights practical issues of performing induction on the Semantic Web.


Description Logic Inductive Reasoning Inductive Logic Programming Minimum Support Threshold Middle East Country 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assmann, U., Henriksson, J., Maluszynski, J.: Combining safe rules and ontologies by interfacing of reasoners. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 33–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  3. 3.
    Berendt, B., Hotho, A., Stumme, G.: Towards semantic web mining. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 264–278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)Google Scholar
  5. 5.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \(\mathcal{AL}\)-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  8. 8.
    Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Fridman Noy, N., Tu, S.W.: The evolution of Protégé: An environment for knowledge-based systems development. International Journal of Human-Computer Studies 58(1), 89–123 (2003)CrossRefGoogle Scholar
  9. 9.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Haarslev, V., Möller, R.: Description of the RACER System and its Applications. In: Goble, C.A., McGuinness, D.L., Möller, R., Patel-Schneider, P.F. (eds.) Working Notes of the 2001 International Description Logics Workshop (DL-2001). CEUR Workshop Proceedings, vol. 49 (2001)Google Scholar
  11. 11.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  12. 12.
    Hustadt, U., Motik, B., Sattler, U.: Reducing \(\mathcal{SHIQ}\)-description logic to disjunctive datalog programs. In: Dubois, D., Welty, C.A., Williams, M.-A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004), pp. 152–162. AAAI Press, Menlo Park (2004)Google Scholar
  13. 13.
    Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Knublauch, H., Musen, M.A., Rector, A.L.: Editing Description Logic Ontologies with the Protégé OWL Plugin. In: Haarslev, V., Möller, R. (eds.) Proceedings of the 2004 International Workshop on Description Logics (DL2004). CEUR Workshop Proceedings, vol. 104 (2004)Google Scholar
  15. 15.
    Kosala, R., Blockeel, H.: Web Mining Research: A Survey. In: SIGKDD: SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining, vol. 2. ACM, New York (2000)Google Scholar
  16. 16.
    Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lisi, F.A.: Principles of Inductive Reasoning on the Semantic Web: A Framework for Learning in \(\mathcal{AL}\)-log. In: Fages, F., Soliman, S. (eds.) Principles and Practice of Semantic Web Reasoning. LNCS, vol. 3703, pp. 118–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) Inductive Logic Programming. LNCS (LNAI), vol. 3194, pp. 216–233. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in \(\mathcal{AL}\)-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS, vol. 2835, pp. 215–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175–210 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Maedche, A., Staab, S.: Discovering Conceptual Relations from Text. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence, pp. 321–325. IOS Press, Amsterdam (2000)Google Scholar
  22. 22.
    Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 348–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  24. 24.
    Nienhuys-Cheng, S.-H., de Wolf, R. (eds.) Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)Google Scholar
  25. 25.
    Noy, N.F., Fergerson, R.W., Musen, M.A.: The Knowledge Model of Protégé-2000: Combining Interoperability and Flexibility. In: Dieng, R., Corby, O. (eds.) EKAW 2000. LNCS, vol. 1937, pp. 17–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1) (2005)Google Scholar
  27. 27.
    Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.) LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francesca A. Lisi
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly

Personalised recommendations