Skip to main content

On the Complexity of SNP Block Partitioning Under the Perfect Phylogeny Model

  • Conference paper
Algorithms in Bioinformatics (WABI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4175))

Included in the following conference series:

Abstract

Recent technologies for typing single nucleotide polymorphisms (SNPs) across a population are producing genome-wide genotype data for tens of thousands of SNP sites. The emergence of such large data sets underscores the importance of algorithms for large-scale haplotyping. Common haplotyping approaches first partition the SNPs into blocks of high linkage-disequilibrium, and then infer haplotypes for each block separately. We investigate an integrated haplotyping approach where a partition of the SNPs into a minimum number of non-contiguous subsets is sought, such that each subset can be haplotyped under the perfect phylogeny model. We show that finding an optimum partition is NP-hard even if we are guaranteed that two subsets suffice. On the positive side, we show that a variant of the problem, in which each subset is required to admit a perfect path phylogeny haplotyping, is solvable in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bafna, V., Gusfield, D., Lancia, G., Yooseph, S.: Haplotyping as perfect phylogeny: A direct approach. J. of Computational Biology 10(3–4), 323–340 (2003)

    Article  Google Scholar 

  2. Chung, R.H., Gusfield, D.: Empirical exploration of perfect phylogeny haplotyping and haplotypers. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 5–19. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid populations. J. of Molecular Biology and Evolution 7(2), 111–122 (1990)

    Google Scholar 

  4. Dinur, I., Regev, O., Smyth, C.D.: The hardness of 3-uniform hypergraph coloring. In: Proc. 43rd Symposium on Foundations of Computer Science, pp. 33–42 (2002)

    Google Scholar 

  5. Eskin, E., Halperin, E., Karp, R.M.: Efficient reconstruction of haplotype structure via perfect phylogeny. J. of Bioinformatics and Computational Biology 1(1), 1–20 (2003)

    Article  Google Scholar 

  6. Eskin, E., Halperin, E., Sharan, R.: Optimally phasing long genomic regions using local haplotype predictions. In: Proc. 2nd RECOMB Satellite Workshop on Computational Methods for SNPs and Haplotypes, Pittsburgh, Pennsylvania, pp. 13–26 (2004)

    Google Scholar 

  7. Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Molecular Biology and Evolution 12(5), 921–927 (1995)

    Google Scholar 

  8. Felsner, S., Raghavan, V., Spinrad, J.: Recognition algorithms for orders of small width and graphs of small Dilworth number. Order 20, 351–364 (2003)

    Article  MathSciNet  Google Scholar 

  9. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete Applied Mathematics (in press, 2006)

    Google Scholar 

  10. Gramm, J., Nierhoff, T., Tantau, T.: Perfect path phylogeny haplotyping with missing data is fixed-parameter tractable. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 174–186. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gusfield, D.: Inference of haplotypes from samples of diploid populations: complexity and algorithms. J. of Computational Biology 8(3), 305–323 (2001)

    Article  MathSciNet  Google Scholar 

  13. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: Proc. 6th Conf. on Computational Molecular Biology RECOMB 2002, pp. 166–175. ACM Press, New York (2002)

    Google Scholar 

  14. Gusfield, D., Orzack, S.H.: Haplotype Inference. In: CRC Handbook on Bioinformatics (2005)

    Google Scholar 

  15. Halperin, E., Karp, R.M.: Perfect phylogeny and haplotype assignment. In: Proc. 8th Conf. on Computational Molecular Biology RECOMB 2004, pp. 10–19. ACM Press, New York (2004)

    Google Scholar 

  16. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. J. of the ACM 45(5), 960–981 (1994)

    Article  MathSciNet  Google Scholar 

  17. Carlson, C.S., Eberle, M.A., Kruglyak, L., Nickerson, D.A.: Mapping complex disease loci in whole-genome association studies. Nature 429, 446–452 (2004)

    Article  Google Scholar 

  18. Niu, T., Qin, S., Xu, X., Liu, J.: Bayesian haplotype inference for multiple linked single nucleotide polymorphisms. American J. of Human Genetics 70(1), 157–169 (2002)

    Article  Google Scholar 

  19. Patil, N., Berno, A.J., Hinds, D.A., et al.: Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294(5547), 1719–1723 (2001)

    Article  Google Scholar 

  20. Stephens, M., Smith, N., Donnelly, P.: A new statistical method for haplotype reconstruction from population data. American J. of Human Genetics 68(4), 978–989 (2001)

    Article  Google Scholar 

  21. Wang, D.G., Fan, J.B., Siao, C.J., Berno, A., Young, P.P., et al.: Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science 280(5366), 1077–1082 (1998)

    Article  Google Scholar 

  22. Zhang, J., Rowe, W.L., Clark, A.G., Buetow, K.H.: Genomewide distribution of high-frequency, completely mismatching SNP haplotype pairs observed to be common across human populations. American J. of Human Genetics 73(5), 1073–1081 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gramm, J., Hartman, T., Nierhoff, T., Sharan, R., Tantau, T. (2006). On the Complexity of SNP Block Partitioning Under the Perfect Phylogeny Model. In: Bücher, P., Moret, B.M.E. (eds) Algorithms in Bioinformatics. WABI 2006. Lecture Notes in Computer Science(), vol 4175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11851561_9

Download citation

  • DOI: https://doi.org/10.1007/11851561_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39583-6

  • Online ISBN: 978-3-540-39584-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics