A Unifying View of Genome Rearrangements

  • Anne Bergeron
  • Julia Mixtacki
  • Jens Stoye
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4175)

Abstract

Genome rearrangements have been modeled by a variety of operations such as inversions, translocations, fissions, fusions, transpositions and block interchanges. The double cut and join operation, introduced by Yancopoulos et al., allows to model all the classical operations while simplifying the algorithms. In this paper we show a simple way to apply this operation to the most general type of genomes with a mixed collection of linear and circular chromosomes. We also describe a graph structure that allows simplifying the theory and distance computation considerably, as neither capping nor concatenation of the linear chromosomes are necessary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sankoff, D., Mazowita, M.: Stability of rearrangement measures in the comparison of genome sequences. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 603–614. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)CrossRefGoogle Scholar
  4. 4.
    Casjens, S., Palmer, N., van Vugt, R., Huang, W.M., Stevenson, B., Rosa, P., Lathigra, R., Sutton, G., Peterson, J., Dodson, R.J., Haft, D., Hickey, E., Gwinn, M., White, O., Fraser, C.M.: A bacterial genome in flux: The twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35, 490–516 (2000)CrossRefGoogle Scholar
  5. 5.
    Volff, J.N., Altenbuchner, J.: A new beginning with new ends: Linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186, 143–150 (2000)CrossRefGoogle Scholar
  6. 6.
    Zheng, C., Lenert, A., Sankoff, D.: Reversal distance for partially ordered genomes. Bioinformatics 21, i502–i508 (2005) (proceedings of ISMB 2005)CrossRefGoogle Scholar
  7. 7.
    El-Mabrouk, N.: Genome rearrangements with gene families. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 291–320. Oxford University Press, Oxford (2005)Google Scholar
  8. 8.
    Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592. IEEE Press, Los Alamitos (1995)Google Scholar
  9. 9.
    Lu, L., Huang, Y.L., Wang, T.C., Chiu, H.T.: Analysis of circular genome rearrangement by fusions, fissions and block-interchanges. BMC Bioinformatics 7 (2006)Google Scholar
  10. 10.
    Lin, Y.C., Lu, C.L., Chang, H.Y., Tang, C.Y.: An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species. J. Comp. Biol. 12, 102–112 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anne Bergeron
    • 1
  • Julia Mixtacki
    • 2
  • Jens Stoye
    • 3
  1. 1.Comparative Genomics LaboratoryUniversité du Québec à MontréalCanada
  2. 2.International NRW Graduate School in Bioinformatics and Genome ResearchUniversität BielefeldGermany
  3. 3.Technische FakultätUniversität BielefeldGermany

Personalised recommendations