Spatial Morphological Covariance Applied to Texture Classification

  • Erchan Aptoula
  • Sébastien Lefèvre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4105)

Abstract

Morphological covariance, one of the most frequently employed texture analysis tools offered by mathematical morphology, makes use of the sum of pixel values, i.e. “volume” of its input. In this paper, we investigate the potential of alternative measures to volume, and extend the work of Wilkinson (ICPR’02) in order to obtain a new covariance operator, more sensitive to spatial details, namely the spatial covariance. The classification experiments are conducted on the publicly available Outex 14 texture database, where the proposed operator leads not only to higher classification scores than standard covariance, but also to the best results reported so far for this database when combined with an adequate illumination invariance model.

Keywords

Morphological covariance spatial moments colour texture classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)MATHGoogle Scholar
  2. 2.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Berlin (2003)MATHGoogle Scholar
  3. 3.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8, 179–187 (1962)Google Scholar
  4. 4.
    Wilkinson, M.H.F.: Generalized pattern spectra sensitive to spatial information. In: Proceedings of the 16th ICPR, Quebec City, Canada, vol. 1, pp. 21–24 (2002)Google Scholar
  5. 5.
    Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recognition 37, 1629–1640 (2004)CrossRefGoogle Scholar
  6. 6.
    Comer, M., Delp, E.: Morphological operations for color image processing. Journal of Eletronic Imaging 8, 279–289 (1999)CrossRefGoogle Scholar
  7. 7.
    Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex: New framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 16th ICPR, Quebec City, Canada, vol. 1, pp. 701–706 (2002)Google Scholar
  8. 8.
    Hanbury, A., Kandaswamy, U., Adjeroh, D.A.: Illumination-invariant morphological texture classification. In: Ronse, C., Najman, L., Decencière, E. (eds.) Proceedings of the 7th ISMM, Computational Imaging and Vision, vol. 30, pp. 377–386. Springer, Dordrecht (2005)Google Scholar
  9. 9.
    Finlayson, G.D., Hordley, S., Schaefer, G., Tian, G.: Illuminant and device invariant colour using histogram equalisation. Pattern Recognition 38, 179–190 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Erchan Aptoula
    • 1
  • Sébastien Lefèvre
    • 1
  1. 1.LSIIT, Pôle APIUMR-7005 CNRS-Louis Pasteur UniversityIllkirchFrance

Personalised recommendations