Advertisement

An Efficient Algorithm for Inference in Rough Set Flow Graphs

  • C. J. Butz
  • W. Yan
  • B. Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4100)

Abstract

Pawlak recently introduced rough set flow graphs (RSFGs) as a graphical framework for reasoning from data. No study, however, has yet investigated the complexity of the accompanying inference algorithm, nor the complexity of inference in RSFGs. In this paper, we show that the traditional RSFG inference algorithm has exponential time complexity. We then propose a new RSFG inference algorithm that exploits the factorization in a RSFG. We prove its correctness and establish its polynomial time complexity. In addition, we show that our inference algorithm never does more work than the traditional algorithm. Our discussion also reveals that, unlike traditional rough set research, RSFGs make implicit independency assumptions regarding the problem domain.

Keywords

Reasoning under uncertainty rough set flow graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On The Desirability of Acyclic Database Schemes. Journal of the ACM 30(3), 479–513 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Butz, C.J., Yan, W., Yang, B.: The computational complexity of inference using rough set flow graphs. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS, vol. 3641, pp. 335–344. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Dawid, A.P., Lauritzen, S.L.: Hyper Markov Laws in The Statistical Analysis of Decomposable Graphical Models. The Annals of Satistics 21, 1272–1317 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Greco, S., Pawlak, Z., Słowiński, R.: Generalized decision algorithms, rough inference rules, and flow graphs. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS, vol. 2475, pp. 93–104. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Hajek, P., Havranek, T., Jirousek, R.: Uncertain Information Processing in Expert System (1992)Google Scholar
  6. 6.
    Madson, A.L., Jensen, F.V.: Lazy Propagation: A Junction Tree Inference Algorithm based on Lazy Evaluation. Artificial Intelligence 113(1-2), 203–245 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pawlak, Z.: Flow Graphs and Decision Algorithms. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS, vol. 2639, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Pawlak, Z.: In pursuit of patterns in data reasoning from data - the rough set way. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS, vol. 2475, pp. 1–9. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dordrecht (1991)zbMATHGoogle Scholar
  11. 11.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  12. 12.
    Shafer, G.: Probabilistic Expert Systems. Society for the Institute and Applied Mathematics, Philadelphia (1996)Google Scholar
  13. 13.
    Wong, S.K.M., Butz, C.J., Wu, D.: On the Implication Problem for Probabilistic Conditional Independency. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 30(6), 785–805 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • C. J. Butz
    • 1
  • W. Yan
    • 1
  • B. Yang
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada

Personalised recommendations