Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual

  • Jiong Guo
  • Rolf Niedermeier
  • Sebastian Wernicke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4169)

Abstract

We provide first-time fixed-parameter tractability results for the NP-complete problems Maximum Full-Degree Spanning Tree and Minimum-Vertex Feedback Edge Set. These problems are dual to each other: In Maximum Full-Degree Spanning Tree, the task is to find a spanning tree for a given graph that maximizes the number of vertices that preserve their degree. For Minimum-Vertex Feedback Edge Set the task is to minimize the number of vertices that end up with a reduced degree. Parameterized by the solution size, we exhibit that Minimum-Vertex Feedback Edge Set is fixed-parameter tractable and has a problem kernel with the number of vertices linearly depending on the parameter k. Our main contribution for Maximum Full-Degree Spanning Tree, which is W[1]-hard, is a linear-size problem kernel when restricted to planar graphs. Moreover, we present subexponential-time algorithms in the case of planar graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for Dominating Set. Journal of the ACM 51, 363–384 (2004)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. Journal of Algorithms 12, 308–340 (1991)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bhatia, R., Khuller, S., Pless, R., Sussmann, Y.: The full degree spanning tree problem. Networks 36, 203–209 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Broersma, H.J., Huck, A., Kloks, T., Koppius, O., Kratsch, D., Müller, H., Tuinstra, H.: Degree-preserving trees. Networks 35, 26–39 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 269–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Dehne, F.K.H.A., Fellows, M.R., Fernau, H., Prieto, E., Rosamond, F.A.: Nonblocker: Parameterized algorithmics for minimum dominating set. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 237–245. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)Google Scholar
  8. 8.
    Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Proc. 1st ACiD, pp. 1–41 (2005)Google Scholar
  9. 9.
    Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized Kernels and Catalytic Reductions: An Improved FPT Algorithm for Max Leaf Spanning Tree and Other Problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Fomin, F.V., Thilikos, D.M.: Fast parameterized algorithms for graphs on surfaces: Linear kernel and exponential speed-up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 581–592. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Khuller, S., Bhatia, R., Pless, R.: On local search and placement of meters in networks. SIAM Journal on Computing 32(2), 470–487 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lewinter, M.: Interpolation theorem for the number of degree-preserving vertices of spanning trees. IEEE Transactions on Circuits Systems I: Fundamental Theory and Applications 34(2), 205 (1987)MathSciNetGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)MATHCrossRefGoogle Scholar
  15. 15.
    Ormsbee, L.E.: Implicit network calibration. Journal of Water Resources Planning Management 115, 243–257 (1989)CrossRefGoogle Scholar
  16. 16.
    Ormsbee, L.E., Wood, D.J.: Explicit pipe network calibration. Journal of Water Resources Planning Management 112, 116–182 (1986)Google Scholar
  17. 17.
    Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2), 217–241 (1994)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jiong Guo
    • 1
  • Rolf Niedermeier
    • 1
  • Sebastian Wernicke
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations