edge dominating set: Efficient Enumeration-Based Exact Algorithms

  • Henning Fernau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4169)


We analyze edge dominating set from a parameterized perspective. More specifically, we prove that this problem is in \({\mathcal{FPT}}\) for general (weighted) graphs. The corresponding algorithms rely on enumeration techniques. In particular, we show how the use of compact representations may speed up the decision algorithm.


Vertex Cover Compact Representation Minimal Vertex Discrete Apply Mathematic Minimal Vertex Cover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal of Discrete Mathematics 12, 289–297 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Technical Report TR-2005-002-A, Emory University Math/CS department (2005)Google Scholar
  3. 3.
    Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A \(2\ 1/10\) approximation algorithm for a generalization of the weighted edge-dominating set problem. Journal of Combinatorial Optimization 5, 317–326 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An o(2O(k) n 3 ) fpt algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45, 634–652 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 564–573. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: Complexity and algorithms. Technical Report TR-2006-210, Department of Computing Science DCS Glasgow, UK (April 2006), Available through:
  11. 11.
    Fernau, H., Niedermeier, R.: An efficient exact algorithm for constraint bipartite vertex cover. Journal of Algorithms 38(2), 374–410 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (Exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Applied Mathematics 118, 199–207 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Improved fixed-parameter algorithms for two feedback set problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 158–168. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM Journal of Discrete Mathematics 6, 375–387 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge domination in graphs. Discrete Applied Mathematics 119(3), 227–250 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Manlove, D.F.: Minimaximal and maximinimal optimisation problems: a partial order-based approach. PhD thesis, University of Glasgow, Computing Science (1998)Google Scholar
  18. 18.
    Parekh, O.: Edge domination and hypomatchable sets. In: Symposium on Discrete Algorithms SODA 2002, pp. 287–291. ACM Press, New York (2002)Google Scholar
  19. 19.
    Plesník, J.: Equivalence between the minimum covering problem and the maximum matching problem. Discrete Mathematics 49, 315–317 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Plesník, J.: Constrained weighted matchings and edge coverings in graphs. Discrete Applied Mathematics 92, 229–241 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Prieto, E.: Systematic Kernelization in FPT Algorithm Design. PhD thesis, The University of Newcastle, Australia (2005)Google Scholar
  22. 22.
    Weston, M.: A fixed-parameter tractable algorithm for matrix domination. Information Processing Letters 90, 267–272 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal of Applied Mathematics 38(3), 364–372 (1980)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henning Fernau
    • 1
    • 2
  1. 1.Univ.Trier, FB 4—Abteilung InformatikTrierGermany
  2. 2.Univ.Tübingen, WSI für InformatikTübingenGermany

Personalised recommendations