An Approach for Parallel Fluid-Structure Interaction on Unstructured Meshes

  • Ulrich Küttler
  • Wolfgang A. Wall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4192)


The simulation of fluid-structure interaction (FSI) problems is a challenge in contemporary science and engineering. This contribution presents an approach to FSI problems with incompressible Newtonian fluids and elastic structures and discusses its realization in a general purpose parallel finite element research code. The resulting algorithm is robust and efficient and scales well on parallel machines. Recent attempts on efficiency improvements are discussed and a numerical example is shown.


Parallel Machine Unstructured Mesh Mesh Equation Coupling Interface Element Matrix Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deparis, S., Discacciati, M., Fourestey, G., Quarteroni, A.: Fluid-structure algorithms based on Steklov-Poincaré operators. Comp. Meth. in Appl. Mech. and Engng. (2006), doi:10.1016/j.cma.2005.09.029Google Scholar
  2. 2.
    Fernández, M.Á., Moubachir, M.: A Newton method using exact jacobians for solving fluid-structure coupling. Computers & Structures 83(2–3), 127–142 (2005)CrossRefGoogle Scholar
  3. 3.
    Heil, M.: An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comp. Meth. in Appl. Mech. and Engng. 193, 1–23 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid-structure interaction using space-time finite elements. Comp. Meth. in Appl. Mech. and Engng. 193, 2087–2104 (2004)zbMATHCrossRefGoogle Scholar
  5. 5.
    Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Küttler, U., Förster, Ch., Wall, W.A.: A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure dirichlet fluid domains. Comput. Mech. (2006), doi:10.1007/s00466-006-0066-5Google Scholar
  7. 7.
    Mok, D.P., Wall, W.A.: Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In: Wall, W.A., Bletzinger, K.-U., Schweitzerhof, K. (eds.) Trends in Computational Structural Mechanics (2001)Google Scholar
  8. 8.
    Neumann, M., Küttler, U., Tiyyagura, S.R., Wall, W.A., Ramm, E.: Computational efficiency of parallel unstructured finite element simulations. In: Resch, M., Boenisch, T., Benkert, K., Furui, T., Seo, Y., Bez, W. (eds.) High Performance Computing on Vector Systems. Proceedings of the High Performance Computing Center Stuttgart, March 2005. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Neumann, M., Tiyyagura, S.R., Wall, W.A., Ramm, E.: Robustness and efficiency aspects for computational fluid structure interaction. In: Krause, E., Shokin, Y.I., Resch, M., Shokina, N. (eds.) Computational Science and High Performance Computing II. The 2nd Russian-German Advanced Research Workshop, Stuttgart, Germany, March 14–16, 2005. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 91. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Tezduyar, T.E.: Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, ch. 17, vol. 3. John Wiley & Sons, Chichester (2004)Google Scholar
  11. 11.
    Wall, W.A.: Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. PhD thesis, Institut für Baustatik, Universität Stuttgart (1999)Google Scholar
  12. 12.
    Wall, W.A., Mok, D.P., Ramm, E.: Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures. In: Wunderlich, W. (ed.) Solids, Structures and Coupled Problems in Engineering, Proceedings of the European Conference on Computational Mechanics ECCM 1999, Munich (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ulrich Küttler
    • 1
  • Wolfgang A. Wall
    • 1
  1. 1.Chair of Computational MechanicsTU MunichGarchingGermany

Personalised recommendations