Assortative Mating Drastically Alters the Magnitude of Error Thresholds

  • Gabriela Ochoa
  • Klaus Jaffe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4193)


The error threshold of replication is an important notion of the quasispecies evolution model; it is a critical mutation rate (error rate) beyond which structures obtained by an evolutionary process are destroyed more frequently than selection can reproduce them. With mutation rates above this critical value, an error catastrophe occurs and the genomic information is irretrievably lost. Recombination has been found to reduce the magnitude of the error threshold in evolving viral quasispecies. Here, through a simulation model based on genetic algorithms, we incorporate assortative mating and explore its effect on the magnitude of error thresholds. We found, consistently on four fitness landscapes, and across a range of evolutionary parameter values, that assortative mating overcomes the shift toward lower error threshold magnitudes induced by recombination, on the other hand, dissortative mating drastically reduces the error threshold magnitude. These results have implications to both natural and artificial evolution: First, they support the hypothesis that assortative mating by itself may overcome some of the evolutionary disadvantages of sex in nature. Second, they suggest a critical interaction between mutation rates and mating strategies in evolutionary algorithms.


Mutation Rate Random Mating Assortative Mating Error Threshold Error Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boerlijst, M.C., Bonhoeffer, S., Nowak, M.A.: Viral quasi-species and recombination. Proc. Royal Soc. London B 263, 1577–1584 (1996)CrossRefGoogle Scholar
  2. 2.
    Bonhoeffer, S., Stadler, P.: Error thresholds on correlated fitness landscapes. J. Theor. Biol. 164, 359–372 (1993)CrossRefGoogle Scholar
  3. 3.
    Eigen, M.: Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971)CrossRefGoogle Scholar
  4. 4.
    Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. J. Phys. Chem. 92, 6881–6891 (1988)CrossRefGoogle Scholar
  5. 5.
    Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization. Springer, Heidelberg (1979)Google Scholar
  6. 6.
    Fisher, R.A.: The genetic theory of natural selection. Clarendon Press, Oxford (1930)Google Scholar
  7. 7.
    Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  8. 8.
    Jaffe, K.: On the adaptive value of some mate selection strategies. Acta Biotheoretica 1(47), 29–40 (1999)CrossRefGoogle Scholar
  9. 9.
    Jaffe, K.: Emergence and maintenance of sex among diploid organisms aided by assortative mating. Acta Biotheoretica 2(48), 137–147 (2000)CrossRefGoogle Scholar
  10. 10.
    Jaffe, K.: On sex, mate selection and evolution: an exploration. Comments on Theoretical Biology 2(7), 91–107 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kauffman, S.A.: The origins of order. Oxford University Press, Oxford (1993)Google Scholar
  12. 12.
    Maynard Smith, J.: The evolution of sex. Cambridge University Press, Cambridge (1978)Google Scholar
  13. 13.
    Maynard Smith, J., Szathmary, E.: The major transitions in evolution. Oxford University Press, Oxford (1995)Google Scholar
  14. 14.
    Nowak, M., Schuster, P.: Error thresholds of replication in finite populations: Mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395 (1989)CrossRefGoogle Scholar
  15. 15.
    Ochoa, G.: Consensus sequence plots and error thresholds: Tools for visualising the structure of fitness landscapes. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 129–138. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Ochoa, G., Harvey, I.: Recombination and error thresholds in finite populations. In: Banzhaf, W., Reeves, C. (eds.) Foundations of Genetic Algorithms, vol. 5, Morgan Kauffman, San Francisco (1998)Google Scholar
  17. 17.
    Ochoa, G., Harvey, I., Buxton, H.: Error thresholds and their relation to optimal mutation rates. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 54–63. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Ochoa, G.: Error thresholds and optimal mutation rates in genetic algorithms, Ph.D. thesis, School of Cognitive and Computing Sciences, University of Sussex, UK (2001)Google Scholar
  19. 19.
    Ochoa, G.: Error thresholds in genetic algorithms. Evolutionary Computation Journal 2(14) (2006)Google Scholar
  20. 20.
    Ochoa, G., Jaffe, K.: On sex, mate selection and the red queen. J. Theor. Biol. 1(199), 1–9 (1999)CrossRefGoogle Scholar
  21. 21.
    Swetina, J., Schuster, P.: Self-replication with errors, a model for polynucleotide replication. Phys. Rev. A [15] Stat. Phys. 45, 6038–6050 (1992)Google Scholar
  22. 22.
    Syswerda, G.: Uniform crossover in genetic algorithms. In: David Schaffer, J. (ed.) Proc. 3rd International Conference on Genetic Algorithms (George Mason University), pp. 2–9. Morgan Kaufmann, San Francisco (1989)Google Scholar
  23. 23.
    van Nimwegen, E., Crutchfield, J.P.: Optimizing epochal evolutionary search: Population-size dependent theory, Tech. Report Preprint 98-06-046, Santa Fe Institute (1998)Google Scholar
  24. 24.
    Vose, M.D.: The simple genetic algorithm: foundations and theory. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  25. 25.
    Wright, A.H., Rowe, J.E., Neil, J.R.: Analysis of the simple genetic algorithm on the single-peak and double-peak landscapes. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 214–219. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  26. 26.
    Wright, A.H., Rowe, J.E., Stephens, C.R., Poli, R.: Bistability in a gene pool GA with mutation. In: De Jong, K.A., Poli, R., Rowe, J.E. (eds.) Foundations of Genetic Algorithms, vol. 7, pp. 63–80. Morgan Kaufmann, San Francisco (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gabriela Ochoa
    • 1
  • Klaus Jaffe
    • 2
  1. 1.INRIA – COMPLEX TeamLe ChesnayFrance
  2. 2.Laboratorio de ComportamientoUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations