Advertisement

Graph Transactions as Processes

  • Paolo Baldan
  • Andrea Corradini
  • Luciana Foss
  • Fabio Gadducci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4178)

Abstract

Transactional graph transformation systems (t-gtss) have been recently proposed as a mild extension of the standard dpo approach to graph transformation, equipping it with a suitable notion of atomic execution for computations. A typing mechanism induces a distinction between stable and unstable items, and a transaction is defined as a shift-equivalence class of computations such that the starting and ending states are stable and all the intermediate states are unstable.

The paper introduces an equivalent, yet more manageable definition of transaction based on graph processes. This presentation is used to provide a universal characterisation for the class of transactions of a given t-gts. More specifically, we show that the functor mapping a t-gts to a graph transformation system having as productions exactly the transactions of the original t-gts is the right adjoint to an inclusion functor.

Keywords

Graph processes refinement transactions zero-safe nets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., Dotti, F.L., Foss, L., Gadducci, F., Ribeiro, L.: Towards a notion of transaction in graph rewriting. In: Bruni, R., Varró, D. (eds.) Proceedings International Workshop on Graph Transformation and Visual Modeling Techniques. Electr. Notes in Theor. Comp. Sci. Elsevier, Amsterdam (to appear, 2006)Google Scholar
  2. 2.
    Baldan, P., Corradini, A., Montanari, U.: Concatenable graph processes: relating processes and derivation traces. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, p. 283. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Unfolding of double-pushout graph grammars is a coreflection. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 145–163. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token approaches. Info. & Comp. 156(1-2), 46–89 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bruni, R., Montanari, U.: Transactions and zero-safe nets. In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, pp. 380–426. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Padberg, J.: The category of typed graph grammars and its adjunctions with categories of derivations. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26(3/4), 241–265 (1996)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation I: Basic concepts and double pushout approach, ch. 3. In: Rozenberg [15], pp. 163–245Google Scholar
  9. 9.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  10. 10.
    Ehrig, H., Kreowski, H.-J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Concurrency, Parallelism, and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  11. 11.
    Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Formal software specification with refinements and modules of typed graph transformation systems. Journal of Computer and System Science 64(2), 171–218 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Habel, A., Müller, J., Plump, D.: Double-pushout graph transformation revisited. Mathematical Structures in Computer Science 11(5), 637–688 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Heckel, R., Ehrig, H., Engels, G., Täntzer, G.: Classification and comparison of module concepts for graph transformation systems, ch. 17. In: Ehrig, et al. [9], pp. 669–689Google Scholar
  14. 14.
    Kreowski, H.-J., Kuske, S.: Graph transformation units and modules. In: Ehrig, et al. [9], ch. 15, pp. 607–638Google Scholar
  15. 15.
    Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  16. 16.
    Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: Language and environment, ch. 13. In: Ehrig, et al. [9], pp. 487–550Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Andrea Corradini
    • 2
  • Luciana Foss
    • 2
    • 3
  • Fabio Gadducci
    • 2
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly
  3. 3.Instituto de InformáticaUniversidade Federal do Rio Grande do SulBrasil

Personalised recommendations