Semantic Correctness in Adaptive Process Management Systems

  • Linh Thao Ly
  • Stefanie Rinderle
  • Peter Dadam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4102)


Adaptivity in Process Management Systems (PMS) is key to their successful applicability in pratice. Approaches have already been developed to ensure the system correctness after arbitrary process changes at the syntactical level. However, still errors may be caused at the semantical level. Therefore, the integration of application knowledge will flag a milestone in the development of process management technology. In this paper, we introduce a framework for defining semantic constraints over processes in such a way that they can express real-world application knowledge. On the other hand, these constraints are still manageable concerning the effort for maintenance and semantic process verification. This can be used, for example, to detect semantic conflicts when applying process changes (e.g., drug incompatibilities). In order to enable the PMS to deal with such semantic conflicts we also introduce a notion of semantic correctness and discuss how to (efficiently) verify semantic correctness in the context of process changes.


Semantic Correctness Semantic Process Verification Semantic Constraints Adaptive Process Management Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling problems related to change. Theoret. Comp. Science 270, 125–203 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data and Knowledge Engineering 24, 211–238 (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adaptive workflow systems. DPD 16, 91–116 (2004)Google Scholar
  4. 4.
    Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a workflow management system. In: HICSS-34 (2001)Google Scholar
  5. 5.
    Kochut, K., Arnold, J., Sheth, A., Miller, J., Kraemer, E., Arpinar, B., Cardoso, J.: IntelliGEN: A distributed workflow system for discovering protein-protein interactions. DPD 13, 43–72 (2003)zbMATHGoogle Scholar
  6. 6.
    Reichert, M., Rinderle, S., Dadam, P.: On the modeling of correct service flows with BPEL4WS. In: EMISA 2004, pp. 117–128 (2004)Google Scholar
  7. 7.
    Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in workflow systems – a survey. DKE 50, 9–34 (2004)CrossRefGoogle Scholar
  8. 8.
    Rinderle, S.: Schema Evolution in Process Management Systems. PhD thesis, University of Ulm (2004)Google Scholar
  9. 9.
    Haarslev, V., Möller, R.: Description of the racer system and its applications. In: Proceedings International Workshop on Description Logics (DL 2001), Stanford, USA, August 1-3, 2001, pp. 131–141 (2001)Google Scholar
  10. 10.
    Hayes-Roth, F.: Rule-based systems. Commun. ACM 28, 921–932 (1985)CrossRefGoogle Scholar
  11. 11.
    Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and process evolution - a semantics based approach. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Andrews, T., Curbera, F., Dholakia, H., Goland, Y., et al.: BPELWS - Business Process Execution Language for Web Services. In: BEA Systems, International Business Machines Corporation, Microsoft Corporation, SAP AG, Siebel Systems (2003)Google Scholar
  13. 13.
    Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between process type and instance changes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 274–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Rinderle, S., Reichert, M., Dadam, P.: Disjoint and overlapping process changes: Challenges, solutions, applications. In: CoopIS 2004, pp. 101–120 (2004)Google Scholar
  15. 15.
    Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows without losing control. JIIS 10, 93–129 (1998)Google Scholar
  16. 16.
    Maviglia, S., Zielstorff, R., Paterno, M., Teich, J., Bates, D., Kuperman, G.: Automating complex guidelines for chronic disease: Lessons learned. Journal of American Medical Inf. Ass. 10, 154–165 (2003)CrossRefGoogle Scholar
  17. 17.
    Blaser, R., Schnabel, M., Heger, O., Opitz, E., Lenz, R., Kuhn, K.: Improving pathway compliance and clinician performance by using information technology. In: MIE 2005 (2005)Google Scholar
  18. 18.
    Boxwala, A., Peleg, M., Tu, S.: GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. Biomed. Inform. 37, 147–161 (2004)CrossRefGoogle Scholar
  19. 19.
    Quaglini, S., Stefanelli, M., Cavallini, A., Micieli, G.G., Fassino, C., Mossa, C.C.: Guideline-based careflow systems. Artif. Intell. Med. 20, 5–22 (2000)CrossRefGoogle Scholar
  20. 20.
    Weske, M.: Flexible modeling and execution of workflow activities. In: Proc. Hawaii Int’l. Conf. on System Sciences, Hawaii, pp. 713–722 (1998)Google Scholar
  21. 21.
    van der Aalst, W.M.P., Basten, T., Verbeek, H.M.W., Verkoulen, P.A.C., Voorhoeve, M.: Adaptive workflow: On the interplay between flexibility and support. Interprise Information Systems, 63–70 (2000)Google Scholar
  22. 22.
    Pathak, J., Caragea, D., Honovar, V.: Ontolgy-extended component-based workflows: A framework for constructing complex workflows from semantically heterogeneous software components. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 41–56. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Bowers, S., Lin, K., Ludäscher, B.: On integrating scientific resources through semantic registration. In: SSDBM 2004 (2004)Google Scholar
  24. 24.
    Kim, J., Gil, Y., Spraragen, M.: A knowledge-based approach to interactive workflow composition. In: ICAPS 2004 (2004)Google Scholar
  25. 25.
    Cardoso, J., Sheth, A.: Semantic e-workflow composition. JIIS 21, 191–225 (2003)Google Scholar
  26. 26.
    Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web services. In: Intl. Conf. on Web Services, Las Vegas, NV (June 2003)Google Scholar
  27. 27.
    Hayes-Roth, F., Jacobstein, N.: The state of knowledge-based systems. Commun. ACM 37, 26–39 (1994)CrossRefGoogle Scholar
  28. 28.
    Ader, M.: Ilog components for business process management solutions (2002)Google Scholar
  29. 29.
    Greiner, U., Ramsch, J., Heller, B., Löffler, M., Müller, R., Rahm, E.: Adaptive guideline-based treatment workflows with adaptflow. In: CGP 2004, pp. 113–117 (2004)Google Scholar
  30. 30.
    Müller, R., Greiner, U., Rahm, E.: Agentwork: A workflow system supporting rule-based workflow adaption. DKE 51, 223–256 (2004)CrossRefGoogle Scholar
  31. 31.
    van der Aalst, W., de Beer, H., van Dongen, B.: Process mining and verification of properties: An approach based on temporal logic. In: CoopIS 2005, pp. 130–147 (2005)Google Scholar
  32. 32.
    Nahler, M.: Semantical conflicts in adaptive process managament systems (2005) (in German)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Linh Thao Ly
    • 1
  • Stefanie Rinderle
    • 1
  • Peter Dadam
    • 1
  1. 1.Dept. DBISUniversity of UlmGermany

Personalised recommendations