Advertisement

I/O-Efficient Undirected Shortest Paths with Unbounded Edge Lengths

  • Ulrich Meyer
  • Norbert Zeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)

Abstract

We show how to compute single-source shortest paths in undirected graphs with non-negative edge lengths in \({\mathcal{O}}(\sqrt{nm/B}\log n + {\mathit{MST}}(n,m))\) I/Os, where n is the number of vertices, m is the number of edges, B is the disk block size, and MST(n,m) is the I/O-cost of computing a minimum spanning tree. For sparse graphs, the new algorithm performs \({\mathcal{O}}((n/\sqrt{B})\log n)\) I/Os. This result removes our previous algorithm’s dependence on the edge lengths in the graph.

Keywords

Minimum Span Tree Priority Queue Cluster Tree Sparse Graph Adjacency List 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related problems. Comm. ACM, 1116–1127 (1988)Google Scholar
  2. 2.
    Arge, L., Brodal, G.S., Toma, L.: On external-memory MST, SSSP and multi-way planar graph separation. J. Alg. 53(2), 186–206 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arge, L., Toma, L., Zeh, N.: I/O-efficient algorithms for planar digraphs. In: Proc. 15th SPAA, pp. 85–93 (2003)Google Scholar
  4. 4.
    Buchsbaum, A.L., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.R.: On external memory graph traversal. In: Proc. 11th SODA, pp. 859–860 (2000)Google Scholar
  5. 5.
    Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter, J.S.: External-memory graph algorithms. In: Proc. 6th SODA, pp. 139–149 (1995)Google Scholar
  6. 6.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Num. Math. 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kumar, V., Schwabe, E.J.: Improved algorithms and data structures for solving graph problems in external memory. In: Proc. 8th SPDP, pp. 169–176 (1996)Google Scholar
  8. 8.
    Mehlhorn, K., Meyer, U.: External-memory breadth-first search with sublinear I/O. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 723–735. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 434–445. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Meyer, U., Zeh, N.: I/O-efficient undirected shortest paths with unbounded weights. Tech. Report CS-2006-04, Faculty of Comp. Sci., Dalhousie Univ. (2006)Google Scholar
  11. 11.
    Pettie, S., Ramachandran, V.: Computing shortest paths with comparisons and additions. In: Proc. 13th SODA, pp. 267–276 (2002)Google Scholar
  12. 12.
    Thorup, M.: Undirected single source shortest paths with positive integer weights in linear time. J. ACM 46, 362–394 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Thorup, M.: Floats, integers, and single source shortest paths. J. Alg. 35, 189–201 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ulrich Meyer
    • 1
  • Norbert Zeh
    • 2
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Faculty of Computer ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations