Popular Matchings in the Capacitated House Allocation Problem

  • David F. Manlove
  • Colin T. S. Sng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4168)


We consider the problem of finding a popular matching in the Capacitated House Allocation problem (CHA). An instance of CHA involves a set of agents and a set of houses. Each agent has a preference list in which a subset of houses are ranked in strict order, and each house may be matched to a number of agents that must not exceed its capacity. A matching M is popular if there is no other matching M′ such that the number of agents who prefer their allocation in M′ to that in M exceeds the number of agents who prefer their allocation in M to that in M′. Here, we give an \(O(\sqrt{C}n_1+m)\) algorithm to determine if an instance of CHA admits a popular matching, and if so, to find a largest such matching, where C is the total capacity of the houses, n1 is the number of agents and m is the total length of the agents’ preference lists. For the case where preference lists may contain ties, we give an \(O((\sqrt{C}+n_1)m)\) algorithm for the analogous problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66, 689–701 (1998)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Abraham, D.J., Cechlárová, K., Manlove, D.F., Melhorn, K.: Pareto optimality in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Abraham, D.J., Irving, R.W., Kavitha, T., Melhorn, K.: Popular matchings. In: Proceedings of SODA 2005, pp. 424–432. ACM-SIAM, New York (2005)Google Scholar
  4. 4.
    Abraham, D.J., Kavitha, T.: Dynamic matching markets and voting paths. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 65–76. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Proceedings of STOC 1983, pp. 448–456 (1983)Google Scholar
  6. 6.
    Gärdenfors, P.: Match making: Assignments based on bilateral preferences. Behavioural Sciences 20, 166–173 (1975)CrossRefGoogle Scholar
  7. 7.
    Irving, R.W., Kavitha, T., Melhorn, K., Michail, D., Paluch, K.: Rank-maximal matchings. In: Proceedings of SODA 2004, pp. 68–75. ACM-SIAM, New York (2004)Google Scholar
  8. 8.
    Mahdian, M.: Random popular matchings. In: Proceedings of EC 2006, pp. 238–242. ACM-SIAM, New York (2006)Google Scholar
  9. 9.
    Manlove, D.F., Sng, C.T.S.: Popular matchings in the Capacitated House Allocation Problem. Technical Report TR-2006-222, University of Glasgow, Department of Computing Science (June 2006)Google Scholar
  10. 10.
    Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052. Springer, Heidelberg (2006)Google Scholar
  11. 11.
    Pulleyblank, W.R.: Matchings and Extensions. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) The Handbook of Combinatorics, ch. 3, vol. 1, pp. 179–232. North Holland, Amsterdam (1995)Google Scholar
  12. 12.
    Roth, A.E.: The evolution of the labor market for medical interns and residents: A case study in game theory. Journal of Political Economy 92, 991–1016 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David F. Manlove
    • 1
  • Colin T. S. Sng
    • 1
  1. 1.Department of Computing ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations