Advertisement

Kernel Regression Based Short-Term Load Forecasting

  • Vivek Agarwal
  • Anton Bougaev
  • Lefteri Tsoukalas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4132)

Abstract

Electrical load forecasting is an important tool in managing transmission and distribution facilities, financial resources, manpower, and materials at electrical power utility companies. A simple and accurate electrical load forecasting scheme is required. Short-term load forecasting (STLF) involves predicting the load from few hours to a week ahead. A simple non-parametric kernel regression (KR) approach for STLF is presented. Kernel regression is a linear approach with the ability to handle nonlinear information. A Gaussian kernel whose bandwidth selected by the Direct Plug-in (DPI) method is utilized. The performance comparison of the proposed method with artificial neural network (ANN), ordinary least squares (OLS), and ridge regression (RR) predictions on the same data set is presented. Experimental results show that kernel regression performs better than ANN forecaster on the given data set. The method proposed provides analytical solution, features optimal bandwidth selection, which is more instructive compared to ANN architecture and its other parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alves da Silva, A.P., Moulin, L.S.: Confidence intervals for neural network based short-term load forecasting. IEEE Trans. Power Sys. 15(4), 1191–1196 (2000)CrossRefGoogle Scholar
  2. 2.
    Atkeson, C.G., Moore, A.W., Schaal, S.: Locally Weighted Learning. Art. Intell. Review. 11, 11–73 (1997)CrossRefGoogle Scholar
  3. 3.
    Bartkiewicz, W., Gontar, Z., Zielinski, J.S., Bardzki, W.: Uncertainty of the short-term electrical load forecasting in utilities. Int. Joint Conf. on Neural Networks 6, 235–240 (2000)Google Scholar
  4. 4.
    Charytoniuk, W., Chen, M.S.: Very short-term load forecasting using neural networks. IEEE Trans. Power Sys. 15(1), 263–268 (2000)CrossRefGoogle Scholar
  5. 5.
    Daneshdoost, M., Lotfalian, M., Bumroonggit, G., Ngoy, J.P.: Neural network with fuzzy set-based classification for short-term load forecasting. IEEE Trans. Power Sys. 13(4), 1386–1391 (1998)CrossRefGoogle Scholar
  6. 6.
    Gao, R., Tsoukalas, L.H.: Neural-wavelet methodology for load forecasting. J. of Intell. and Robotic Sys. 31, 149–157 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gao, R., Wang, X., Bougaev, A., Schooley, D.C., Tsoukalas, L.H.: Short-term elasticities via Intelligent tools for modern power systems. In: IEEE MedPower 2002 3rd Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (2002)Google Scholar
  8. 8.
    Hippert, S.H., Pedreira, C.E., Souza, R.C.: Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Sys. 16(1), 44–55 (2001)CrossRefGoogle Scholar
  9. 9.
    Papalexopoulos, A.D., Hesterberg, T.C.: A regression-based approach to shortterm system load forecasting. IEEE Trans. Power Sys. 5(4), 1535–1547 (1990)CrossRefGoogle Scholar
  10. 10.
    Ranaweera, D.K., Hubele, N.F., Papalexopoulos, A.D.: Application of radial basis function neural network model for short-term load forecasting. Proc. IEE– Gen. Trans. Distri. 142(1), 45–50 (1995)CrossRefGoogle Scholar
  11. 11.
    Ruppert, D., Sheather, S.J., Wand, M.P.: An effective bandwidth selector for local least squares regression. J. of the Amer. Stat. Asso. 90(432), 1257–1270 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vila, J.P., Wagner, V., Neveu, P.: Recurrent neural network for short-term load forecasting. IEEE Trans. Power Sys. 13(1), 126–132 (1998)CrossRefGoogle Scholar
  13. 13.
    Wand, M.P., Jones, M.C.: Kernel Smoothing. CRC Press, Florida (2000)Google Scholar
  14. 14.
    Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. Int. J. of Forecasting 14, 35–62 (1998)CrossRefGoogle Scholar
  15. 15.
    Zhang, B.L., Dong, Z.Y.: An adaptive neural-wavelet model for short-term load forecasting. Electric Power Sys. Research 59, 121–129 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vivek Agarwal
    • 1
  • Anton Bougaev
    • 1
  • Lefteri Tsoukalas
    • 1
  1. 1.Applied Intelligent Systems Laboratory (AISL)Purdue UniversityWest LafayetteUSA

Personalised recommendations