A Model of Grid Cells Based on a Path Integration Mechanism

  • Alexis Guanella
  • Paul F. M. J. Verschure
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)


The grid cells of the dorsocaudal medial entorhinal cortex (dMEC) in rats show higher firing rates when the position of the animal correlates with the vertices of regular triangular tessellations covering the environment. Strong evidence indicates that these neurons are part of a path integration system. This raises the question, how such a system could be implemented in the brain. Here, we present a cyclically connected artificial neural network based on a path integration mechanism, implementing grid cells on a simulated mobile agent. Our results show that the synaptic connectivity of the network, which can be represented by a twisted torus, allows the generation of regular triangular grids across the environment. These tessellations share same spacing and orientation, as neighboring grid cells in the dMEC. A simple gain and bias mechanism allows to control the spacing and the orientation of the grids, which suggests that these different characteristics can be generated by a unique algorithm in the brain.


grid cells entorhinal cortex path integration twisted torus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)CrossRefGoogle Scholar
  2. 2.
    Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.B.: Spatial representation in the entorhinal cortex. Science 305(5688), 1258–1264 (2004)CrossRefGoogle Scholar
  3. 3.
    Moser, M., Sargolini, F., Fyhn, M., Hafting, T., Witer, M., Moser, E.: Grid cells in medial entorhinal cortex: indications of columnar organization. Soc. Neurosci. Abstr. 198(4) (2005)Google Scholar
  4. 4.
    O’Keefe, J., Burgess, N.: Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15(7), 853–866 (2005)CrossRefGoogle Scholar
  5. 5.
    Jeffery, K.J., Burgess, N.: A metric for the cognitive map: found at last? Trends Cogn Sci. 10(1), 1–3 (2006)CrossRefGoogle Scholar
  6. 6.
    Parron, C., Save, E.: Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp. Brain Res. 159(3), 349–359 (2004)CrossRefGoogle Scholar
  7. 7.
    Braitenberg, V.: Vehicles, experiments in synthetic psychology. MIT Press, Cambridge (1984)Google Scholar
  8. 8.
    McNaughton, B., Barnes, C., Gerrard, J., Gothard, K., Jung, M., Knierim, J., Kudrimoti, H., Qin, Y., Skaggs, W., Suster, M., Weaver, K.: Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996)Google Scholar
  9. 9.
    Samsonovich, A., McNaughton, B.: Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17(15), 5900–5920 (1997)Google Scholar
  10. 10.
    Stringer, S., Rolls, E., Trappenberg, T., de Araujo, I.: Self-organizing continuous attractor networks and path integration: two-dimensional models of place cells. Comput. Neural Syst. 13(4), 429–446 (2002)CrossRefGoogle Scholar
  11. 11.
    Conklin, J., Eliasmith, C.: A controlled attractor network model of path integration in the rat. J. Comput. Neurosci. 18(2), 183–203 (2005)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Fuhs, M.C., Touretzky, D.S.: A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26(16), 4266–4276 (2006)CrossRefGoogle Scholar
  13. 13.
    O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)CrossRefGoogle Scholar
  14. 14.
    O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)Google Scholar
  15. 15.
    Wyss, R., König, P., Verschure, P.F.M.J.: A model of the ventral visual system based on temporal stability and local memory. PLoS Biol. 4(5), e120 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexis Guanella
    • 1
  • Paul F. M. J. Verschure
    • 1
    • 2
  1. 1.Institute of NeuroinformaticsUniversity and ETH ZürichZürichSwitzerland
  2. 2.ICREA and Technology DepartmentUniversity Pompeu FabraBarcelonaSpain

Personalised recommendations