Simbad: An Autonomous Robot Simulation Package for Education and Research

  • Louis Hugues
  • Nicolas Bredeche
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


Simbad is an open source Java 3d robot simulator for scientific and educational purposes. It is mainly dedicated to researchers and programmers who want a simple basis for studying Situated Artificial Intelligence, Machine Learning, and more generally AI algorithms, in the context of Autonomous Robotics and Autonomous Agents. It is is kept voluntarily readable and simple for fast implementation in the field of Research and/or Education.

Moreover, Simbad embeds two stand-alone additional packages : a Neural Network library (feed-forward NN, recurrent NN, etc.) and an Artificial Evolution Framework for Genetic Algorithm, Evolutionary Strategies and Genetic Programming. These packages are targeted towards Evolutionary Robotics.

The Simbad Package is available from under the conditions of the GPL (GNU General Public Licence).


Mobile Robot Robot Controller Robot Simulation Evolutionary Robotic Neural Network Optimisation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Gerkey, B., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In: Proceedings of the 11th International Conference on Advanced Robotics (2003)Google Scholar
  3. 3.
    Koenig, N., Howard, A.: Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan (2004)Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Lewis, P., Neumann, U.: Performance of Java versus C++,
  7. 7.
    Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Brooks, R.: A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation 2(1), 14–23 (1986)CrossRefGoogle Scholar
  9. 9.
    Sutton, R., Barto, A.: Reinforcement Learning. MIT Press, Cambridge (1998)Google Scholar
  10. 10.
    Goldberg, D.: Genetic Algorithms in search. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  11. 11.
    Nolfi, S., Parisi, D.: Auto-teaching: networks that develop their own teaching input. In: Proceedings of the second ECAL (1993)Google Scholar
  12. 12.
    Godzik, N., Schoenauer, M., Sebag, M.: Robustness in the long run: Auto-teaching vs anticipation in evolutionary robotics. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 932–941. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Gruau, F.: Modular Genetic Neural Networks for six-legged Locomotion. In: Proceedings of Artificial Evolution (EA) (1995)Google Scholar
  14. 14.
    Bredeche, N., Hugues, L.: Speeding up learning with Dynamic Environment Shaping in Evolutionary Robotics. In: Proceedings of the fifth International Workshop of Epigenetics Robotics (EpiRob) (2005)Google Scholar
  15. 15.
    Bredeche, N., Hugues, L.: Evolutionary Robotics: incremental learning of sequential behavior. In: Proceedings of the fourth IEEE International Conference on Developmental Learning (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Louis Hugues
    • 1
  • Nicolas Bredeche
    • 2
  1. 1.Ginkgo-networksParisFrance
  2. 2.Equipe Inférence et Apprentissage, TAO / INRIA Futurs, Laboratoire de Recherche en InformatiqueUniversité de Paris-SudOrsay CedexFrance

Personalised recommendations