Advertisement

Robot Learning in a Social Robot

  • Salvador Dominguez
  • Eduardo Zalama
  • Jaime Gómez García-Bermejo
  • Jaime Pulido
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)

Abstract

In this paper, research work on Arisco is described. Arisco is a social robot built around a robotic head with gesture ability, visual and auditive perception and learning. It is intended for interacting with people. The general architecture is first described in the paper. Then, the learning capacity of Arisco is addressed. It learns and performs associations between different stimulus responses through several dynamic neural networks, guided by motivational drives. Main contribution of this paper is the integration in a real robot of conditioning learning models based on a neural competitive network. A number of experiments are discussed, covering stimulus competition, habituation and first and second order conditioning.

Keywords

Conditioning Stimulus Classical Conditioning Operant Conditioning Emotional Behaviour Neural Network Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots: concepts, design, and applications, Technical Report No. CMU-RI-TR-02-29, Robotics Institute, Carnegie Mellon University (2002)Google Scholar
  2. 2.
    Breazeal, C.: Designing Sociable Robots. MIT Press, Cambridge (2002)Google Scholar
  3. 3.
    Kozima, H., Yano, H.: A robot that learns to communicate with human caregivers. In: First International Workshop on Epigenetic Robotics, Lund Sweeden (2001)Google Scholar
  4. 4.
    Dominguez, S., Zalama, E., García-Bermejo, J.G.: Arisco un Robot Social con Vocación de Recepcionista. In: VII Workshop on Phiscal Agents, Las Palmas de Gran Canaria, Spain, April 27-28 (2006)Google Scholar
  5. 5.
    Tapias, S., Dominguez, S., Zalama, E., García-Bermejo, J.G.: Desarrollo de un Sistema de Localizacion de Fuentes Sonoras Basado en Microcontroladores. In: Proceedings de XXVI Jornadas de Automática (2005)Google Scholar
  6. 6.
    Werry, I., Dautenhahn, K., Ogden, B., Harwin, W.S.: Can social interaction skills be taught by a social agent? The role of a robotic mediator in autism therapy. In: Beynon, M., Nehaniv, C.L., Dautenhahn, K. (eds.) CT 2001. LNCS, vol. 2117, p. 57. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Orabona, F., Metta, G., Sandini, G.: Object-based Visual Attention: a Model for a Behaving Robot. In: 3rd International Workshop on Attention and Performance in Computational Vision, San Diego, CA, USA (2005)Google Scholar
  8. 8.
    Dominguez, S., Zalama, E., García-Bermejo, J.G.: Desarrollo de una Cabeza Robótica con Capacidad de Seguimiento Visual e Identificacion de Personas. In: Proceedings de XXVI Jornadas de Automática, Alicante, Spain (2005)Google Scholar
  9. 9.
    Rescorla, R.A., Wagner, A.R.: A theory of pavlovian conditioning: variations in the effective-ness of reinforcement and nonreinforcement. In: Black, A.H., Prokasy, W.F. (eds.) Classical Conditioning II, ch. 3, pp. 64–99. Appleton, New York (1972)Google Scholar
  10. 10.
    Sutton, R.S., Barto, A.G.: Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review 88, 135–170 (1981)CrossRefGoogle Scholar
  11. 11.
    Grossberg, S.: Some Nonlinear Networks capable of Learning a Spatial Pattern of Arbitrary Complexity. In: Proceedings of the National Academy of Sciences, USA, vol. 59, pp. 368–372 (1968)Google Scholar
  12. 12.
    Grossberg, S.: Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition and Motor Control. Reidel Press, Boston (1982)zbMATHGoogle Scholar
  13. 13.
    Hodgkin, A.L., Huxley, A.F.: A quantative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology 117, 500–544 (1952)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Salvador Dominguez
    • 1
  • Eduardo Zalama
    • 2
  • Jaime Gómez García-Bermejo
    • 2
  • Jaime Pulido
    • 1
  1. 1.Computer Vision and Robotics DivisionCartif FoundationValladolidSpain
  2. 2.Department of Systems Engineering and ControlUniversity of ValladolidValladolidSpain

Personalised recommendations