Evolved Homogeneous Neuro-controllers for Robots with Different Sensory Capabilities: Coordinated Motion and Cooperation

  • Elio Tuci
  • Christos Ampatzis
  • Federico Vicentini
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


This paper tackles the issue of designing homogeneous neuro-controllers with artificial evolution in order to control groups of robots that differ in terms of sensory capabilites. In order to accomplish a common goal, the agents have to complement the partial “view” they have of the environment. The results obtained prove that the agents are capable of cooperating and coordinating their actions in order to carry out a navigation task. A preliminary analysis of the mechanisms underlying the group behaviour is provided.


Sound Signalling Light Bulb Infrared Sensor Single Robot Evolutionary Robotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective behaviour. Artificial Life 9, 255–267 (2003)CrossRefGoogle Scholar
  2. 2.
    Cangelosi, A., Parisi, D. (eds.): Simulating the Evolution of Language. Springer, London (2002)zbMATHGoogle Scholar
  3. 3.
    Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  5. 5.
    Marocco, D., Nolfi, S.: Emergence of communication in embodied agents: Co-adapting communicative and non-communicative behaviours. In: Cangelosi, A., Bugmann, G., Borisyuk, R. (eds.) Modeling language, cognition and action: 9th Neural Computation and Psychology Workshop. World Scientific, London (2005)Google Scholar
  6. 6.
    Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: A new distributed robotic concept. Autonomous Robots 17(2-3), 193–221 (2004)CrossRefGoogle Scholar
  7. 7.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Di Paolo, E.: Behavioral coordination, structural congruence and entrainment in a simulation of acoustically coupled agents. Adaptive Behavior 8(1), 27–48 (2000)CrossRefGoogle Scholar
  9. 9.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (2001)Google Scholar
  10. 10.
    Quinn, M.: Evolving Communication without Dedicated Communication Channels. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS, vol. 2159, pp. 357–366. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Phil. Trans. of the Royal Soc. of London, Series A. 361, 2321–2344 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Vicentini, F., Tuci, E.: Swarmod: a 2d s-bot’s simulator. Technical Report TR/IRIDIA/2006-005, IRIDIA, Université Libre de Bruxelles (2006), This paper is available at:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Elio Tuci
    • 1
  • Christos Ampatzis
    • 1
  • Federico Vicentini
    • 2
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBruxellesBelgium
  2. 2.Robotics Lab, Mechanics Dept.Politecnico di MilanoMilanoItaly

Personalised recommendations