Evolving Robot’s Behavior by Using CNNs

  • Eleonora Bilotta
  • Giuseppe Cutrí
  • Pietro Panano
Conference paper

DOI: 10.1007/11840541_52

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)
Cite this paper as:
Bilotta E., Cutrí G., Panano P. (2006) Evolving Robot’s Behavior by Using CNNs. In: Nolfi S. et al. (eds) From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science, vol 4095. Springer, Berlin, Heidelberg

Abstract

This paper deals with a new kind of robotic control, based on Chua’s nonlinear circuit called Cellular Neural Network (CNN). A CNN is a net of coupled circuits, connected in a grid structure, which inherits its features and properties from the well known Artificial Neural Network and Cellular Automata. It has been demonstrated that CNNs are able of universal computation, many cognitive processes such as pattern recognition, features extraction, image processing, and mathematical simulations of nonlinear equations such as Navier-Stokes equations, reaction-diffusion equations, and so on. Using an approach like Evolutionary Robotics, we evolved, instead of Neural Networks, CNNs by using Genetic Algorithms (GAs), for controlling the behavior of an hexapod robot in a simulated environment. We developed a Java3D software in which physical simulations are carried on by using different kind of robots. In this program, a module for evolving the robot’s behavior by GAs has been implemented. Furthermore, many advanced sensors and actuators complete the evolution of the robot’s behavior. The evolved behavior of our robots is very similar to that of real insects, and we analyzed the pathways these agents perform in the simulated environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eleonora Bilotta
    • 1
  • Giuseppe Cutrí
    • 2
  • Pietro Panano
    • 1
  1. 1.University of CalabriaArcavacata di RendeItaly
  2. 2.University of TurinTurinItaly

Personalised recommendations