Incremental Evolution of Robot Controllers for a Highly Integrated Task

  • Anders Lyhne Christensen
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


In this paper we apply incremental evolution for automatic synthesis of neural network controllers for a group of physically connected mobile robots called s-bots. The robots should be able to safely and cooperatively perform phototaxis in an arena containing holes. We experiment with two approaches to incremental evolution, namely behavioral decomposition and environmental complexity increase. Our results are compared with results obtained in a previous study where several non-incremental evolutionary algorithms were tested and in which the evolved controllers were shown to transfer successfully to real robots. Surprisingly, none of the incremental evolutionary strategies performs any better than the non-incremental approach. We discuss the main reasons for this and why it can be difficult to apply incremental evolution successfully in highly integrated tasks.


Mobile Robot Successful Solution Real Robot Robot Controller Neural Network Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press/Bradford Books (2000)Google Scholar
  2. 2.
    Harvey, I., Di Paolo, E.A., Wood, R., Quinn, M., Tuci, E.: Evolutionary robotics: A new scientific tool for studying cognition. Artificial Life 11(1-2), 79–98 (2005)CrossRefGoogle Scholar
  3. 3.
    Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.L., Dorigo, M.: The cooperation of swarm-bots: Physical interactions in collective robotics. IEEE Robotics and Automation Magazine 12(2), 21–28 (2005)CrossRefGoogle Scholar
  4. 4.
    Christensen, A.L., Dorigo, M.: Evolving an integrated phototaxis and hole-avoidance behavior for a swarm-bot. In: Proceedings of ALIFE X. MIT Press, Cambridge (in press, 2006)Google Scholar
  5. 5.
    Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Boston (2002)zbMATHGoogle Scholar
  6. 6.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  7. 7.
    Schwefel, H.P.: Evolution and Optimum Seeking. Wiley & Sons, New York (1995)Google Scholar
  8. 8.
    Potter, M.A., De Jong, K.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Potter, M.A., De Jong, K.: Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation 8(1), 1–29 (2000)CrossRefGoogle Scholar
  10. 10.
    Christensen, A.L.: Efficient neuro-evolution of hole-avoidance and phototaxis for a swarm-bot. Technical Report TR/IRIDIA/2005-14, IRIDIA, Université Libre de Bruxelles, Belgium, DEA Thesis (2005)Google Scholar
  11. 11.
    Harvey, I., Husbands, P., Cliff, D.: Seeing the light: artificial evolution, real vision. In: Proceedings of the third international conference on Simulation of adaptive behavior: From animals to animats, vol. 3, pp. 392–401. MIT Press, Cambridge (1994)Google Scholar
  12. 12.
    Harvey, I.: Species adaptation genetic algorithms: a basis for a continuing SAGA. In: Varela, F.J., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life. Toward a Practice of Autonomous Systems, Paris, France, pp. 346–354. MIT Press, Cambridge (1992)Google Scholar
  13. 13.
    Kodjabachian, J., Meyer, J.A.: Evolution and development of neural controllers for locomotion, gradient-following, and obstacle-avoidance in artificial insects. IEEE Transactions on Neural Networks 9(5), 796–812 (1998)CrossRefGoogle Scholar
  14. 14.
    Nolfi, S., Floreano, D., Miglino, O., Mondada, F.: How to evolve autonomous robots: Different approaches in evolutionary robotics. In: Proceedings of Artificial Life IV, pp. 190–197. MIT Press/Bradford Books (1994)Google Scholar
  15. 15.
    Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Behavior 6(2), 325–368 (1998)CrossRefGoogle Scholar
  16. 16.
    Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior. Adaptive Behavior 5, 317–342 (1997)CrossRefGoogle Scholar
  17. 17.
    Baldassarre, G., Parisi, D., Nolfi, S.: Distributed coordination of simulated robots based on self-organisation. Artificial Life (in press, 2006)Google Scholar
  18. 18.
    Trianni, V., Tuci, E., Dorigo, M.: Cooperative hole avoidance in a swarm-bot. Robotics and Autonomous Systems 54(2), 97–103 (2006)CrossRefGoogle Scholar
  19. 19.
    Trianni, V., Labella, T.H., Dorigo, M.: Evolution of direct communication for a swarm-bot performing hole avoidance. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 130–141. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anders Lyhne Christensen
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations