Physical Systems as Constructive Logics

  • Peter Hines
Conference paper

DOI: 10.1007/11839132_9

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4135)
Cite this paper as:
Hines P. (2006) Physical Systems as Constructive Logics. In: Calude C.S., Dinneen M.J., Păun G., Rozenberg G., Stepney S. (eds) Unconventional Computation. UC 2006. Lecture Notes in Computer Science, vol 4135. Springer, Berlin, Heidelberg

Abstract

This paper is an investigation of S. Wolfram’s Principle of Computational Equivalence’ – that (discrete) systems in the natural world should be thought of as performing computations. We take a logical approach, and demonstrate that under almost trivial (physically reasonable) assumptions, discrete evolving physical systems give a class of logical models. Moreover, these models are of intuitionistic, or constructive logics – that is, exactly those logics with a natural computational interpretation under the Curry-Howard ‘proofs as programs’ isomorphism.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peter Hines
    • 1
  1. 1.York UniversityYorkU.K.

Personalised recommendations