1/f Noise in Elementary Cellular Automaton Rule 110

  • Shigeru Ninagawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4135)

Abstract

Cellular Automata are considered to be discrete dynamical systems as well as computing systems. Spectral analysis has been employed to investigate the behavior of dynamical systems. We calculated the power spectra from the evolutions starting from a random initial configuration to analyze the temporal behavior in elementary cellular automata. As a result, rule 110 has 1/f spectrum for the longest time steps. Rule 110 alone has proved to be capable of supporting universal computation in elementary cellular automata. These results suggest that there is a relationship between computational universality and 1/f noise in cellular automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wolfram, S.: Statistical Mechanics of Cellular Automata. Reviews of Modern Physics 55, 601–644 (1983)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Wolfram, S. (ed.): Theory and Applications of Cellular Automata. World Scientific, Singapore (1986)MATHGoogle Scholar
  3. 3.
    Martínez, G.J., McIntosh, H.V., Mora, J.C.S.T.: Gliders in Rule 110. Int. Journ. of Unconventional Computing 2, 1–49 (2005)Google Scholar
  4. 4.
    Li, W.: Power Spectra of Regular Languages and Cellular Automata. Complex Systems 1, 107–130 (1987)MathSciNetMATHGoogle Scholar
  5. 5.
    Li, W., Packard, N.: The Structure of the Elementary Cellular Automata Rule Space. Complex Systems 4, 281–297 (1990)MathSciNetGoogle Scholar
  6. 6.
    Wolfram, S.: Universality and Complexity in Cellular Automata. Physica D 10, 1–35 (1984)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Crutchfield, J., Farmer, D., Packard, N., Shaw, R., Jones, G., Donnelly, R.J.: Power Spectral Analysis of a Dynamical System. Phys. Lett. 76A, 1–4 (1980)MathSciNetGoogle Scholar
  8. 8.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C++, ch. 13, 2nd edn. Cambridge University Press, Cambridge (2002)Google Scholar
  9. 9.
    Keshner, M.S.: 1/f Noise. Proc. IEEE 70, 211–218 (1982)CrossRefGoogle Scholar
  10. 10.
    Wolfram, S.: A New Kind of Science. Wolfram Media (2002)Google Scholar
  11. 11.
    Li, W., Nordahl, M.G.: Transient Behavior of Cellular Automaton Rule 110. Physics Letters A 166, 335–339 (1992)CrossRefGoogle Scholar
  12. 12.
    Cook, M.: Universality in Elementary Cellular Automata. Complex Systems 15, 1–40 (2004)MathSciNetMATHGoogle Scholar
  13. 13.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2. Academic Press, New York (1982)MATHGoogle Scholar
  14. 14.
    Ninagawa, S., Yoneda, M., Hirose, S.: 1/f Fluctuation in the Game of Life. Physica D 118, 49–52 (1988)CrossRefGoogle Scholar
  15. 15.
    Langton, C.: Computation at the Edge of Chaos: Phase Transitions and Emergent Computation. Physica D 42, 12–37 (1990)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Li, W., Packard, N.H., Langton, C.G.: Transition Phenomena in Cellular Automata Rule Space. Physica D 45, 77–94 (1990)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Ninagawa, S.: Evolving Cellular Automata by 1/f Noise. In: Capcarrere, M.S., et al. (eds.) Advances in Artificial Life, pp. 453–460. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shigeru Ninagawa
    • 1
  1. 1.Division of Information and Computer ScienceKanazawa Institute of TechnologyIshikawaJapan

Personalised recommendations