An Estimation of Distribution Particle Swarm Optimization Algorithm

  • Mudassar Iqbal
  • Marco A. Montes de Oca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)


In this paper we present an estimation of distribution particle swarm optimization algorithm that borrows ideas from recent developments in ant colony optimization which can be considered an estimation of distribution algorithm. In the classical particle swarm optimization algorithm, particles exploit their individual memory to explore the search space. However, the swarm as a whole has no means to exploit its collective memory (represented by the array of previous best positions or pbests) to guide its search. This causes a re-exploration of already known bad regions of the search space, wasting costly function evaluations. In our approach, we use the swarm’s collective memory to probabilistically guide the particles’ movement towards the estimated promising regions in the search space. Our experiments show that this approach is able to find similar or better solutions than the canonical particle swarm optimizer with fewer function evaluations.


Particle Swarm Optimization Search Space Particle Swarm Swarm Intelligence Distribution Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, NJ, pp. 1942–1948. IEEE Press, Los Alamitos (1995)CrossRefGoogle Scholar
  2. 2.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, Piscataway, NJ, pp. 39–43. IEEE Press, Los Alamitos (1995)CrossRefGoogle Scholar
  3. 3.
    Clerc, M., Kennedy, J.: The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  4. 4.
    Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 IEEE Congress on Evolutionary Computation, pp. 84–88 (2000)Google Scholar
  5. 5.
    Trelea, I.C.: The particle swarm optimization algorithm: Convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms–a comparative review. Natural Computing 3(1), 77–112 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Larrañaga, P., Lozano, J.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Genetic Algorithms and Evolutionary Computation 2 (2001)Google Scholar
  10. 10.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  11. 11.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. In: Santa Fe Institute Studies on the Sciences of Complexity, Oxford University Press, USA (1999)Google Scholar
  12. 12.
    Socha, K.: ACO for Continuous and Mixed-Variable Optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Technical Report TR/IRIDIA/2005-037, IRIDIA, Université Libre de Bruxelles (2005)Google Scholar
  14. 14.
    Janson, S., Middendorf, M.: A hierarchical particle swarm optimizer and its adaptive variant. IEEE Transactions on Systems, Man and Cybernetics–Part B 35(6), 1272–1282 (2005)CrossRefGoogle Scholar
  15. 15.
    Monson, C.K., Seppi, K.D.: Exposing origin-seeking bias in PSO. In: Beyer, H.G., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 241–248. ACM Press, New York (2005)CrossRefGoogle Scholar
  16. 16.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report 2005005, Nanyang Technological University, Singapore and IIT Kanpur, India (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mudassar Iqbal
    • 1
  • Marco A. Montes de Oca
    • 2
  1. 1.Computing LaboratoryUniversity of KentCanterburyUnited Kingdom
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations