A Direct Application of Ant Colony Optimization to Function Optimization Problem in Continuous Domain

  • Min Kong
  • Peng Tian
Conference paper

DOI: 10.1007/11839088_29

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)
Cite this paper as:
Kong M., Tian P. (2006) A Direct Application of Ant Colony Optimization to Function Optimization Problem in Continuous Domain. In: Dorigo M., Gambardella L.M., Birattari M., Martinoli A., Poli R., Stützle T. (eds) Ant Colony Optimization and Swarm Intelligence. ANTS 2006. Lecture Notes in Computer Science, vol 4150. Springer, Berlin, Heidelberg

Abstract

This paper proposes a direct application of Ant Colony Optimization to the function optimization problem in continuous domain. In the proposed algorithm, artificial ants construct solutions by selecting values for each variable randomly biased by a specific variable-related normal distribution, of which the mean and deviation values are represented by pheromone modified by ants according to the previous search experience. Some methods to avoid premature convergence, such as local search in different neighborhood structure, pheromone re-initialization and different solutions for pheromone intensification are incorporated into the proposed algorithm. Experimental setting of the parameters are presented, and the experimental results show the potential of the proposed algorithm in dealing with the function optimization problem of different characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Min Kong
    • 1
  • Peng Tian
    • 1
  1. 1.Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations