A Discourse on Complexity of Process Models

(Survey Paper)
  • J. Cardoso
  • J. Mendling
  • G. Neumann
  • H. A. Reijers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4103)

Abstract

Complexity has undesirable effects on, among others, the correctness, maintainability, and understandability of business process models. Yet, measuring complexity of business process models is a rather new area of research with only a small number of contributions. In this paper, we survey findings from neighboring disciplines on how complexity can be measured. In particular, we gather insight from software engineering, cognitive science, and graph theory, and discuss in how far analogous metrics can be defined on business process models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)Google Scholar
  2. 2.
    Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execution Language for Web Services, Version 1.1. Specification, BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems (2003)Google Scholar
  3. 3.
    Azuma, M., Mole, D.: Software management practice and metrics in the european community and japan: Some results of a survey. Journal of Systems and Software 26(1), 5–18 (1994)CrossRefGoogle Scholar
  4. 4.
    Bastani, F.B.: An approach to measuring program complexity. In: COMPSAC 1983, pp. 1–8 (1983)Google Scholar
  5. 5.
    Cant, S.N., Jeffery, D.R., Henderson-Sellers, B.: A conceptual model of cognitive complexity of elements of the programming process. Information and Software Technology 37(7)Google Scholar
  6. 6.
    Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s Properties. In: 6th International Enformatika Conference, Transactions on Enformatika, Systems Sciences and Engineering, vol. 8, pp. 213–218 (2005)Google Scholar
  7. 7.
    Cardoso, J.: Evaluating Workflows and Web Process Complexity. In: Workflow Handbook 2005, pp. 284–290. Future Strategies, Inc., Lighthouse Point (2005)Google Scholar
  8. 8.
    Cardoso, J.: Complexity analysis of bpel web processes. Journal of Software Process: Improvement and Practice (2006) (to appear)Google Scholar
  9. 9.
    Guceglioglu, A.S., Demiros, O.W.: Using Software Quality Characteristics to Measure Business Process Quality. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 374–379. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Halstead, M.H.: Elements of Software Science. Elsevier, Amsterdam (1987)Google Scholar
  11. 11.
    Harrison, W., Magel, K.: A topological analysis of computer programs with less than three binary branches. ACM SIGPLAN Notices, 51–63 (April 1981)Google Scholar
  12. 12.
    Henry, S., Kafura, D.: Software structure metrics based on information-flow. IEEE Transactions On Software Engineering 7(5), 510–518 (1981)CrossRefGoogle Scholar
  13. 13.
    Kalb, G.E.: Counting lines of code, confusions, conclusions, and recommendations. In: Briefing to the 3rd Annual REVIC User’s Group Conference (1990)Google Scholar
  14. 14.
    Latva-Koivisto, A.M.: Finding a complexity for business process models. Research report, Helsinki University of Technology (February 2001)Google Scholar
  15. 15.
    McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineering 2(4), 308–320 (1976)CrossRefMathSciNetGoogle Scholar
  16. 16.
    McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Communications of the ACM 32, 1415–1425 (1989)CrossRefGoogle Scholar
  17. 17.
    McCabe, T.J., Watson, A.H.: Software complexity. Journal of Defence Software Engineering 7(12), 5–9 (1994) (crosstalk)Google Scholar
  18. 18.
    Mendling, J., Moser, M., Neumann, G., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P.: A Quantitative Analysis of Faulty EPCs in the SAP Reference Model. BPM Center Report BPM-06-08. Eindhoven University of Technology, Eindhoven (2006)Google Scholar
  19. 19.
    Miller, G.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review (1956)Google Scholar
  20. 20.
    Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Proceedings of the 28th International Conference on Software Engineering, Shanghai, China (2006)Google Scholar
  21. 21.
    Neumann, G.: Metaprogrammierung und Prolog. Addison-Wesley, Reading (1988)Google Scholar
  22. 22.
    Obdrzalek, J.: Dag-width: connectivity measure for directed graphs. In: Symposium on Discrete Algorithms, pp. 814–821. ACM Press, New York (2006)Google Scholar
  23. 23.
    Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow Process Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 290–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Shepperd, M.: Early life-cycle metrics and software quality models. Information and Software Technology 32(4), 311–316 (1990)CrossRefGoogle Scholar
  25. 25.
    Ward, W.: Software defect prevention using mccabe’s complexity metric. Hewlett Packard Journal 40(2), 64–69 (1989)Google Scholar
  26. 26.
    Zuse, H.: Software Complexity: Measures and Methods. Walter de Gruyter and Co., New Jersey (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Cardoso
    • 1
  • J. Mendling
    • 2
  • G. Neumann
    • 2
  • H. A. Reijers
    • 3
  1. 1.University of MadeiraFunchalPortugal
  2. 2.Vienna University of Economics and Business AdministrationViennaAustria
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations