Process Mining and Petri Net Synthesis

  • Ekkart Kindler
  • Vladimir Rubin
  • Wilhelm Schäfer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4103)


The theory of regions and the algorithms for synthesizing a Petri net model from a transition system, which are based on this theory, have interesting practical applications – in particular in the design of electronic circuits. In this paper, we show that this theory can be also applied for mining the underlying process from the user interactions with a document management system. To this end, we combine an algorithm that we called activity mining with such Petri net synthesis algorithms. We present the basic idea of this approach, show some first results, and compare them with classical process mining techniques. The main benefit is that, in combination, the activity mining algorithm and the synthesis algorithms do not need a log of the activities, which is not available when the processes are supported by a document management system only.


Transition System Process Mining Synthesis Algorithm Software Repository Output Document 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W., van Dongena, B.F., Herbst, J., Marustera, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering 47, 237–267 (2003)CrossRefGoogle Scholar
  2. 2.
    Kindler, E., Rubin, V., Schäfer, W.: Incremental Workflow mining based on Document Versioning Information. In: Li, M., Boehm, B., Osterweil, L.J. (eds.) SPW 2005. LNCS, vol. 3840, pp. 287–301. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Humphrey, W.S.: Managing the software process. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)Google Scholar
  4. 4.
    Kindler, E., Rubin, V., Schäfer, W.: Activity mining for discovering software process models. In: Biel, B., Book, M., Gruhn, V. (eds.) Proc. of the Software Engineering 2006 Conference, Leipzig, Germany. LNI, Gesellschaft für Informatik, vol. P-79, pp. 175–180 (2006)Google Scholar
  5. 5.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I: Basic Notions and the Representation Problem. Acta Informatica 27, 315–342 (1989)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33, 297–315 (1996)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Badouel, E., Darondeau, P.: Theory of regions. In: Lectures on Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, pp. 529–586. Springer, London (1998)Google Scholar
  9. 9.
    Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify: a tool for manipulating concurrent specifications and synthesis of asynchronous controllers. IEICE Transactions on Information and Systems E80-D, 315–325 (1997)Google Scholar
  10. 10.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Proceedings of the 6th International Conference on Extending Database Technology, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Herbst, J., Karagiannis, D.: An Inductive approach to the Acquisition and Adaptation of Workflow Models (1999),
  12. 12.
    Weijters, A., van der Aalst, W.: Workflow Mining: Discovering Workflow Models from Event-Based Data. In: Dousson, C., Höppner, F., Quiniou, R. (eds.) Proceedings of the ECAI Workshop on Knowledge Discovery and Spatial Data, pp. 78–84 (2002)Google Scholar
  13. 13.
    van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16, 1128–1142 (2004)CrossRefGoogle Scholar
  14. 14.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Trans. Softw. Eng. Methodol. 7, 215–249 (1998)CrossRefGoogle Scholar
  15. 15.
    MSR 2005 International Workshop on Mining Software Repositories. In: ICSE 2005: Proceedings of the 27th international conference on Software engineering. ACM Press, New York (2005)Google Scholar
  16. 16.
    Herbst, J.: Ein induktiver Ansatz zur Akquisition und Adaption von Workflow-Modellen. PhD thesis, Universität Ulm (2001)Google Scholar
  17. 17.
    Kellner, M.I., Felier, P.H., Finkelstein, A., Katayama, T., Osterweil, L., Penedo, M., Rombach, H.: ISPW-6 Software Process Example. In: Proceedings of the First International Conference on the Software Process, Redondo Beach, CA, USA, pp. 176–186. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  18. 18.
    Wielemaker, J.: An overview of the SWI-Prolog programming environment. In: Mesnard, F., Serebenik, A. (eds.) Proceedings of the 13th International Workshop on Logic Programming Environments, Heverlee, Belgium, Katholieke Universiteit Leuven, pp. 1–16, CW 371 (2003)Google Scholar
  19. 19.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite transition systems. IEEE Transactions on Computers 47, 859–882 (1998)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ekkart Kindler
    • 1
  • Vladimir Rubin
    • 1
  • Wilhelm Schäfer
    • 1
  1. 1.Software Engineering GroupUniversity of PaderbornPaderbornGermany

Personalised recommendations