DODDLE-OWL: A Domain Ontology Construction Tool with OWL

  • Takeshi Morita
  • Naoki Fukuta
  • Noriaki Izumi
  • Takahira Yamaguchi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4185)


In this paper, we propose a domain ontology construction tool with OWL. The advantage of our tool is focusing the quality refinement phase of ontology construction. Through interactive support for refining the initial ontology, OWL-Lite level ontology, which consists of taxonomic relationships (defined as classes) and non-taxonomic relationships (defined as properties), is constructed effectively. The tool also provides semi-automatic generation of the initial ontology using domain specific documents and general ontologies.


General Ontology Association Rule Input Module Domain Ontology Concept Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)Google Scholar
  2. 2.
    Heijst, G.V.: The Role of Ontologies in Knowledge Engineering. Dr.thesis, University of Amsterdam (1995)Google Scholar
  3. 3.
    Ding, Y., Foo, S.: Ontology Research and Development, Part 1 – a Review of Onlotogy. Journal of Information Science, 123–136 (2002)Google Scholar
  4. 4.
    Michael, K., Smith, C.W., McGuinness, D.L.: OWL Web Ontology Language Guide (2004),
  5. 5.
    Kurematsu, M., Iwade, T., Nakaya, N., Yamaguchi, T.: Doddle ii a domain ontology development environment using a mrd and text corpus. IEICE(E) E87-D(4), 908–916 (2004)Google Scholar
  6. 6.
    Morita, T., Izumi, N., Fukuta, N., Yamaguchi, T.: A graphical rdf-based meta-model management tool. IEICE(E) E89-D(4), 1368–1377 (2006)Google Scholar
  7. 7.
    Miller, G.A.: WordNet: A Lexical Database for English. ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  8. 8.
    National Institute of Information and Communications Technology (EDR Electronic Dictionary Technical Guide),
  9. 9.
    Velardi, P., Fabriani, P., Missikoff, M.: Using Text Processing Techniques to Automatically enrich a Domain Ontology. In: Proceedings of the international conference on Formal Ontology in Information Systems, pp. 270–284 (2001)Google Scholar
  10. 10.
    Marti, A., Hearst, H.S.: Customizing a Lexicon to Better Suit a Computational Task. Corpus Processing for Lexical Acquisition, 77–96 (1996)Google Scholar
  11. 11.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of VLDB Conference, pp. 487–499 (1994)Google Scholar
  12. 12.
    Java wordnet library,
  13. 13.
    Nakagawa, H., Mori, T.: A simple but powerful automatic term extraction method. In: Computerm2: 2nd International Workshop on Computational Terminology, COLING-2002 WORKSHOP, pp. 29–35 (2002)Google Scholar
  14. 14.
  15. 15.
    Tsuruoka, Y., Tsujii, J.: Bidirectional inference with the easiest-first strategy for tagging sequence data. In: Proceedings of HLT/EMNLP, pp. 467–474 (2005)Google Scholar
  16. 16.
    HP Labs: Jena Semantic Web Framework (2003),
  17. 17.
    One, C.: xcbl:xml common business library,
  18. 18.
    Navigli, R., Velardi, P.: Automatic adaptation of wordnet to domains. In: Proceedings of International Workshop on Ontologies and Lexical Knowledge Bases (2002)Google Scholar
  19. 19.
    Yamaguchi, T.: Constructing domain ontologies based on concept drift analysis. In: IJCAI Workshop on Ontologies and Problem-Solving Methods, pp. 13–1–13–7 (1999)Google Scholar
  20. 20.
    Hahn, U., Schnattingerg, K.: Toward text knowledge engineering. In: AAAI-1998 proceeding, pp. 524–531 (1998)Google Scholar
  21. 21.
    Faure, D., Nedellec, C.: Knowledge Acquisition of Predicate Argument Structures from Technical Texts. In: Proceedings of International Conference on Knowledge Engineering and Knowledge Management, pp. 329–334 (1999)Google Scholar
  22. 22.
    Maedche, A., Staab, S.: Discovering Conceptual Relations from Text. In: Proceedings of 14th European Conference on Artificial Intelligence, pp. 321–325 (2000)Google Scholar
  23. 23.
    Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Takeshi Morita
    • 1
  • Naoki Fukuta
    • 2
  • Noriaki Izumi
    • 3
  • Takahira Yamaguchi
    • 1
  1. 1.Keio UniversityYokohama-shiJapan
  2. 2.Shizuoka UniversityShizuokaJapan
  3. 3.National Institute of AISTTokyoJapan

Personalised recommendations