Advertisement

Automatic Alignment of Ontology Eliminating the Probable Misalignments

  • Seddiqui Md. Hanif
  • Yohei Seki
  • Masaki Aono
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4185)

Abstract

This paper describes a novel approach of detecting misalignment at the time of aligning two different ontologies, and of eliminating the misalignments. Our objective is to reduce limitation of a specific technique of ontology alignment. Two aligned sets extracted by different alignment techniques from the same pair of ontology, are fed to the misalignment detection and elimination process to produce better alignments. Our experiments demonstrate that our method, taking advantage of misalignment detection and elimination, shows a good recall and precision.

Keywords

Ontologies Semantic Integration and Interoperability Ontology alignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Do, H.-H., Rahm, E.: COMA - a system for flexible combination of schema matching approaches. In: Proc. of the 28th VLDB Conference, Hong Kong, August 2001, pp. 610–621 (2001)Google Scholar
  2. 2.
    Ehrig, M., Haase, P., Stojanovic, N., Hefke, M.: Similarity for ontologies – A Comprehensive Framework. In: 13th European Conference on Information Systems (May 2005)Google Scholar
  3. 3.
    Euzenat, J., Stuckenschmidt, H., Yatsevich, M.: Introduction to the Ontology Alignment Evaluation 2005 (October 2005) Portable Document Format. Available at, http://km.aifb.uni-karlsruhe.de/ws/intont2005/intontPresentationsOAEI.pdf [cited January 12, 2006]
  4. 4.
    Euzenat, J.: An API for ontology alignment. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: 16th European Conference on Artificial Intelligence, ECAI (November 2004)Google Scholar
  6. 6.
  7. 7.
    Hu, W., Jian, N., Qu, Y., Wang, Y.: GMO: A graph matching for ontologies. In: K-Cap Workshop on Integrating Ontologies, Banff, Canada, pp. 41–48 (2005)Google Scholar
  8. 8.
    Jian, N., Hu, W., Cheng, G., Qu, Y.: FalconAO: Aligning ontologies with Falcon. In: KCap Workshop on Integrating Ontologies, Banff, Canada, pp. 85–91 (2005)Google Scholar
  9. 9.
    Langone, H., Haskell, B.R., Miller, G.A.: Annotating WordNet, Frontiers in Corpus Annotation 2004. In: HLT-NAACL Conference Workshop, pp. 63–69 (2004)Google Scholar
  10. 10.
    Levenshtein, I.V.: Binary Codes capable of correcting deletions, insertions, and reversals. Cybernetics and Control Theory 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  11. 11.
    Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Melnik, H., Garcia-Molina, Rahm, E.: Similarity flooding: A versatile graph matching algorithm. In: Proceedings of the International Conference on Data Engineering (ICDE), pp. 117–128 (2002)Google Scholar
  13. 13.
    Porter, M.F.: An Algorithm for Suffix Stripping. In: Jones, S., Karen, Willet, P. (eds.) Readings in Information Retrieval. Morgan Kaufmann, San Francisco (1997)Google Scholar
  14. 14.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proc. 14th IJCAI, Montréal, Canada, pp. 448–453 (1995)Google Scholar
  15. 15.
    Silva, N., Rocha, J.: MAFRA – An ontology MApping FRAmework for the semantic web. In: Proc. 6th International Conference on Business Information Systems, Colorado Springs, USA (2003)Google Scholar
  16. 16.
    Su, X., Gulla, J.A.: Semantic enrichment for ontology mapping. In: Meziane, F., Métais, E. (eds.) NLDB 2004. LNCS, vol. 3136, pp. 217–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Seddiqui Md. Hanif
    • 1
  • Yohei Seki
    • 1
  • Masaki Aono
    • 1
  1. 1.Knowledge Data Engineering laboratory, Department of Information and Computer SciencesToyohashi University of Technology 

Personalised recommendations