Logiweb – A System for Web Publication of Mathematics

  • Klaus Grue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4151)


Logiweb is a system for electronic publication and archival of machine checked mathematics of high typographic quality. It can verify the formal correctness of pages, i.e. mathematical papers expressed suitably. The present paper is an example of such a Logiweb page and the present paper is formally correct in the sense that it has been verified by Logiweb. The paper may of course contain informal errors like any other paper. Logiweb is neutral with respect to choice of logic and choice of notation and can support any kind of formal reasoning.

Logiweb uses the World Wide Web to publish Logiweb pages and Logiweb pages can be viewed by ordinary Web browsers. Logiweb pages can reference definitions, lemmas, and proofs on previously referenced Logiweb pages across the Internet. When Logiweb verifies a Logiweb page, it takes all transitively referenced pages into account.


Proof System Mathematical Textbook Proof Check Link Point Fast Software Encryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohlhase, M.: OMDoc: An open markup format for mathematical documents (version 1.1) (2003),
  2. 2.
    Miner, R., Schaeffer, J.: A gentle introduction to MathML (2001),
  3. 3.
    Trybulec, A., Blair, H.: Computer assisted reasoning with MIZAR. In: Joshi, A. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, Los Angeles, pp. 26–28. Morgan Kaufmann, San Francisco (1985), Google Scholar
  4. 4.
    Muzalewski, M.: An Outline of PC Mizar. Foundation of Logic, Mathematics and Informatics, Mizar User Group, Brussels (1993)Google Scholar
  5. 5.
    Berline, C., Grue, K.: A κ-denotational semantics for Map Theory in ZFC+SI. Theoretical Computer Science 179(1–2), 137–202 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Grue, K.: Map theory. Theoretical Computer Science 102(1), 1–133 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Skalberg, S.C.: An Interactive Proof System for Map Theory. PhD thesis, University of Copenhagen (2002),
  8. 8.
    Vallée, T.: “Map Theory” et Antifondation. Electronic Notes in Theoretical Computer Science, vol. 79. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  9. 9.
    Constable, R.L., Allen, S., Bromly, H., Cleaveland, W., Cremer, J., Harper, R., Howe, D., Knoblock, T., Mendler, N., Panangaden, P., Sasaki, J., Smith, S.: Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall, Englewood Cliffs, New Jersey (1986)Google Scholar
  10. 10.
    Grue, K.: Mathematics and Computation, 7th edn., vol. 1–3. DIKU, Universitetsparken 1, DK-2100 Copenhagen (2001)Google Scholar
  11. 11.
    Grue, K.: Map theory with classical maps. Technical Report 02/21, DIKU (2002),
  12. 12.
    Paulson, L.C.: Introduction to Isabelle. Technical report, University of Cambridge, Computer Laboratory (1998)Google Scholar
  13. 13.
    Paulson, L.C.: The Isabelle reference manual. Technical report, University of Cambridge, Computer Laboratory (1998)Google Scholar
  14. 14.
    Berners-Lee, T., Masinter, L., McCahill, M.: Uniform Resource Locators (URL). RFC 1738, Internet Engineering Task Force (1994),
  15. 15.
    Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A strengthened version of RIPEMD. In: Fast Software Encryption, pp. 71–82 (1996),
  16. 16.
    Grue, K.: Logiweb - a system for web publication of mathematics - appendix. Technical report, Logiweb (2006),
  17. 17.
    Grue, K.: A logiweb base page. Technical report, Logiweb (2006),
  18. 18.
    Grue, K.: The logiweb sequent calculus. Technical report, Logiweb (2006),
  19. 19.
    Mendelson, E.: Introduction to Mathematical Logic, 3rd edn. Wadsworth and Brooks (1987)Google Scholar
  20. 20.
    Knuth, D.: The TeXbook. Addison-Wesley, Reading (1983)Google Scholar
  21. 21.
    Grue, K.: Logiweb. In: Kamareddine, F. (ed.) Mathematical Knowledge Management Symposium 2003. Electronic Notes in Theoretical Computer Science, vol. 93, pp. 70–101. Elsevier, Amsterdam (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Klaus Grue
    • 1
  1. 1.Dept.Comp.SciUniv.of Copenhagen (DIKU) 

Personalised recommendations