Development of NZMATH

  • Matsui Tetsushi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4151)

Abstract

NZMATH is a system oriented to calculations of number theory, based on Python. Currently, it has several basic data types and several modules for number theoretic computations. NZMATH has two key visions 1) user / developer fusion and 2) speed of development, and the system has been growing along the lines. The development is of open source by nature, and we are making effort to be as agile as possible. There are many areas to be developed, especially a module for algebraic numbers is awaited. Some experimental user interface construction is also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonio, C.A.M., Saito, K., Tanaka, S., Asuncion, J.S., Nakamula, K.: Implementation of imaginary quadratic fields and elliptic or hyperelliptic curves over finite prime fields on the system NZMATH for number theory. In: Dignum, F.P.M., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS, vol. 3859. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Beck, K., Andres, C.: Extreme programming explained: embrace change, 2nd edn. Pearson Education Inc., London (2005)Google Scholar
  3. 3.
    Beck, K., et al.: Manifesto for Agile Software Development, http://www.agilemanifesto.org/
  4. 4.
    Cohen, H.: A course in computational algebraic numbers. Springer, Heidelberg (1993)Google Scholar
  5. 5.
    van Hoeij, M.: Factoring polynomials and the knapsack problem. Journal of Number Theory 95(2), 167–189 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    The KANT Project: KANT / KASH, http://www.math.tu-berlin.de/%7Ekant/kash.html
  7. 7.
    Komai, H.: Implementation of arithmetic of elliptic curves over finite prime fields on NZMATH; master thesis, Tokyo Metropolitan University (January 2005)Google Scholar
  8. 8.
    Kumaki, K.: Implementation of multiple polynomial quadratic sieve on the number theoretic system NZMATH and its analysis (Japanese), master thesis, Tokyo Metropolitan University (January 2005)Google Scholar
  9. 9.
    The Magma Computational Algebra System, http://magma.maths.usyd.edu.au/magma/
  10. 10.
    Matsui, T., Kobayashi, D., Abe, M., Nakamula, K.: SIMATH — Recent development in TMU. In: Cohen, A.M., et al. (eds.) “Mathematical Software” Proceedings of ICMS 2002. World Scientific, Singapore (2002)Google Scholar
  11. 11.
    Matsui, T.: Development of computational number theory system by a scripting language (Japanese). In: Noro, M. (ed.) Computer Algebra – Design of Algorithms, Implementations and Applications. RIMS Kokyuroku, vol. 1395, pp. 144–149. Kyoto University (October, 2004)Google Scholar
  12. 12.
    Matsui, T.: NZMATH — past and future of the development. In: Dignum, F.P.M., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS, vol. 3859. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Nakamula, K., Matsui, T.: Developing a system for number theory by script language — Announcement of the release of NZMATH 0.1.1, Dagstuhl. Algorithms and Number Theory (May 2004), http://tnt.math.metro-u.ac.jp/%7Enakamula/talk/dag2004-a.pdf
  14. 14.
    Nishimoto, K., Nakamula, K.: Computer experiment on key generation for the quantum public key cryptosystem over quadratic fields. In: Dignum, F.P.M., van Eijk, R.M., Flores, R. (eds.) AC 2005. LNCS, vol. 3859. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Space Telescope Science Institute: Numarray, http://www.stsci.edu/resources/software_hardware/numarray
  16. 16.
  17. 17.
    NZMATH development group: NZMATH, http://tnt.math.metro-u.ac.jp/nzmath/
  18. 18.
    OpenXM, a project to integrate mathematical software systems (1998–2005), http://www.openxm.org/
  19. 19.
    The PARI group: PARI/GP Development Headquarter, http://pari.math.u-bordeaux.fr/
  20. 20.
    van Rossum, G.: Foreword. In: Programming Python, 1st edn., O’Reilly, Sebastopol (1996)Google Scholar
  21. 21.
  22. 22.
    Stein, W.: Online MATH Calculator, http://modular.math.washington.edu/calc/
  23. 23.
    Stein, W.: Software for Algebra and Geometry Experimentation, http://modular.fas.harvard.edu/SAGE/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matsui Tetsushi
    • 1
  1. 1.Department of MathematicsTokyo Metropolitan University 

Personalised recommendations