A General Computational Scheme for Testing Admissibility of Nilpotent Orbits of Real Lie Groups of Inner Type

  • Alfred G. Noël
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4151)

Abstract

One of the most fundamental problems in the field of Representation Theory is the description of all the unitary representations of a given group. For non-compact real reductive Lie groups, there is evidence that new unitary representations can be obtained from data provided by their admissible nilpotent orbits. In this paper, we describe a general scheme for determining the admissibility of a given real nilpotent orbit. We implement some parts of the scheme using the software system LiE. We give a detailed example and study the complexity of the algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Djoković, D.: Classification of nilpotent elements in simple exceptional real Lie algebras of inner type and description of their centralizers. J. Alg. 112, 503–524 (1988)MATHCrossRefGoogle Scholar
  2. 2.
    Kostant, B., Rallis, S.: Orbits and representations associated with symmetric spaces. Amer. J. Math. 93, 753–809 (1971)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Noël, A.G.: Computing maximal tori using LiE and Mathematica. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 728–736. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Noël, A.G.: Classification of Admissible Nilpotent Orbits in Simple Exceptional Lie Algebras of Inner Type. American Mathematical Society Journal of Representation Theory 5, 455–493 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Ohta, T.: Classification of admissible nilpotent orbits in the classical real Lie algebras. J. of Algebra 136(1), 290–333 (1991)MATHCrossRefGoogle Scholar
  6. 6.
    Schwartz, J.: The determination of the admissible nilpotent orbits in real classical groups, Ph. D. Thesis M.I.T. Cambridge, MA (1987)Google Scholar
  7. 7.
    Sekiguchi, J.: Remarks on real nilpotent orbits of a symmetric pair. J. Math. Soc. Japan 39(1), 127–138 (1987)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Vergne, M.: Instantons et correspondence de Kostant-Sekiguchi. R. Acad. Sci. Paris Sér. I Math. 320, 901–906 (1995)MATHMathSciNetGoogle Scholar
  9. 9.
    Van Leeuwen, M.A.A., Cohen, A.M., Lisser, B.: LiE: A package for Lie group computations. Computer Algebra Nederland, Amsterdam, Netherlands (1992)Google Scholar
  10. 10.
    Vogan, D.: Unitary representations of reductive groups. Annals of Mathematical Studies, vol. 118, Princeton University Press Study (1987)Google Scholar
  11. 11.
    Vogan, D.: Associated varieties and unipotent representations. Harmonic Analysis on Reductive Groups, pp. 315–388. Birkhäuser, Boston-Basel-Berlin (1991)Google Scholar
  12. 12.
    Wolfram, S.: The Mathematica Book Wolfram media. Cambridge University Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alfred G. Noël
    • 1
  1. 1.Department of MathematicsUniversity of MassachusettsBostonUSA

Personalised recommendations