A Smart Electric Wheelchair Using UPnP

  • D. Cascado
  • S. Vicente
  • J. L. Sevillano
  • C. Amaya
  • A. Linares
  • G. Jiménez
  • A. Civit-Balcells
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3864)

Abstract

People with disabilities in general, and wheelchair users in particular, are one of the groups of people that may benefit more from Ambient Intelligent (AmI) Systems, enhancing their autonomy and quality of life. However, current wheelchairs are usually not equipped with devices capable of accessing services in AmI environments. In this paper, we describe how an electric wheelchair is equipped with an UPnP based module that allows the integration in AmI systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ISTAG; Scenarios for Ambient Intelligence in 2010; Final Report, EC 2001 (February 2001), http://www.cordis.lu/ist/istag.htm
  2. 2.
    Sevillano, J.L., et al.: On the Design of Ambient Intelligent Systems in the Context of Assistive Technologies. In: Miesenberger, K., Klaus, J., Zagler, W.L., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 914–921. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Civit, A., Abascal, J.: Tetranauta: A Wheelchair Controller for Users with Very Severe Mobility Restrictions. In: Plasencia, I., Ballabio, E. (eds.) Improving the Quality of Life for the European Citizen, pp. 336–341. IOS Press, Amsterdam (1998)Google Scholar
  4. 4.
    Vicente, S., et al.: TetraNauta: a intelligent wheelchair for users with very severe mobility restrictions. In: Proc. IEEE Int. Conf. on Control Applications, pp. 778–783 (September 2002)Google Scholar
  5. 5.
    Vicente Díaz, S.: Una aportación al guiado de sillas de ruedas eléctricas en entornos estructurados (in Spanish). PhD Thesis. Universidad de Sevilla (July 2001)Google Scholar
  6. 6.
  7. 7.
    Meade, M.: DX Key Technical Description. For DX Key Application Designers. Dynamic Controls Ltd. (1997)Google Scholar
  8. 8.
  9. 9.
  10. 10.
    Abascal, J., Sevillano, J.L., Civit, A., Jiménez, G., Falcó, J.: Integration of heterogeneous networks to support the application of Ambient Intelligence in assistive environments. In: IFIP Conf. on Home Oriented Informatics & Telematics HOIT 2005, New York, U.K (April 2005)Google Scholar
  11. 11.
    Jeronimo, M., West, J.: UPnP Design by Example: A software developer’s guide to Universal Plug and Play. Intel Press (2003)Google Scholar
  12. 12.
  13. 13.
  14. 14.
    802.11 Working Group’s Site: http://grouper.ieee.org/groups/802.11/
  15. 15.
    Casas, R.: Sistema interoperable de localización en interiores aplicado a tecnología asistencial (in Spanish). PhD Thesis. Universidad de Zaragoza, Spain (September 2004)Google Scholar
  16. 16.
    The official Bluetooth website, http://www.bluetooth.com
  17. 17.
    Lankenau, A., Röfer, T.: A versatile and safe mobility assistant. IEEE Robotics and automation magazine, 29–37 (March 2001)Google Scholar
  18. 18.
    Ding, D., Cooper, R.A.: Electric-powered wheelchairs: a review of current technology and insight into future directions. IEEE Control Systems Magazine, 22–34 (April 2005)Google Scholar
  19. 19.
  20. 20.
    Haartsen, J.C.: The Bluetooth Radio System. IEEE Personal Communications 7, 28–36 (2000)CrossRefGoogle Scholar
  21. 21.
    The Bluetooth Special Interest Group: Specification Of Bluetooth System - Core Vol. 1 V1.1 (February 2001), http://www.bluetooth.com
  22. 22.
    Cascado, D., Sevillano, J.L., Vicente, S., Díaz del Río, F., Jiménez, G., Linares, A., Civit-Balcells, A.: Modeling Effects of Co-channel Interference over Performance in Single-Slave Bluetooth Piconets. In: The 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2004) (2004)Google Scholar
  23. 23.
    Cascado, D.: Study and evaluation of a wireless communication system for personal area networks (in Spanish). Ph. D. Tesis. University of Seville (2003)Google Scholar
  24. 24.
    Sevillano, J.L., Cascado, D., Díaz del Río, F., Vicente, S., Jiménez, G., Civit-Balcells, A.: Statistical QoS guarantees in Bluetooth under co-channel interference. In: 10th IFIP International Conference on Personal Wireless Communications (PWC 2005) (2005)Google Scholar
  25. 25.
    Simpson, R.C., Levine, S.P.: Automatic adaptation in the NavChair assistive wheelchair navigation system. IEEE Trans. Rehab. Eng. 7(4), 452–463 (1999)CrossRefGoogle Scholar
  26. 26.
    Nisbet, P.D.: Assessment and Training of Children for Powered Mobility in the UK. Technology & Disability, vol. 14, pp. 173–182. IOS Press, Amsterdam (2002)Google Scholar
  27. 27.
    Ernst, T.: E-Wheelchair: A Communication System Based on IPv6 and NEMO. In: 2nd International Conference On Smart homes and health Telematic (ICOST 2004) (2004)Google Scholar
  28. 28.
    Hsiao, C.-H., et al.: A design of small-area automatic wheelchair. In: IEEE International Conference on Networking, Sensing & Control, pp. 1341–1345 (Taiwan 2004) (2004)Google Scholar
  29. 29.
    Cooper, R.A., Boninger, M.L., Cooper, R., Dobson, A.R.: Technical perspectives: Use of the Independence 3000 iBOT Transporter at home and in the community. J. Spinal Cord Med. 26(1), 79–85 (2003)CrossRefGoogle Scholar
  30. 30.
    Salvador, Z., Bonail, B., Lafuente, A., Larrea, M., Abascal, J., Gardeazabal, L.: AmIChair: Ambient Intelligence and Intelligent Wheelchairs. In: Proceedings of HOIT 2005 (Home Oriented Informatics and Telematics 2005) (2005)Google Scholar
  31. 31.
    Hoyer, H.: The OMNI wheelchair. Service Robot: An International Journal 1(1), 26–29 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • D. Cascado
    • 1
  • S. Vicente
    • 1
  • J. L. Sevillano
    • 1
  • C. Amaya
    • 1
  • A. Linares
    • 1
  • G. Jiménez
    • 1
  • A. Civit-Balcells
    • 1
  1. 1.ETS Ingeniería InformáticaUniversidad de SevillaSevillaSpain

Personalised recommendations