How to Protect a Signature from Being Shown to a Third Party

  • Marek Klonowski
  • Przemysław Kubiak
  • Mirosław Kutyłowski
  • Anna Lauks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4083)

Abstract

Many attempts to controlling who and under which circumstances can verify our signatures have been made so far. For this purpose one can use undeniable signatures, designated confirmer signatures or designated verifier signatures. We introduce a model of new kind of signatures, called dedicated digital signatures (or dds for short). The core idea is that a designated verifier can present a standard signature of the signer derived from dds to a third party, but at the price of revealing the private key of the designated verifier or at the price of revealing the designated verifier’s signature of a particular message. Therefore the verifier will show the signature only in very special situations. We present a construction of a dds based on ElGamal signatures and its modifications that allow to obtain additional important features.

References

  1. 1.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  2. 2.
    Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  3. 3.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS (2000)Google Scholar
  5. 5.
    Chaum, D., Evertse, J.H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)Google Scholar
  6. 6.
    Chaum, D., Evertse, J.H., van de Graaf, J., Peralta, R.: Demonstrating possession of a discrete logarithm without revealing it. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 200–212. Springer, Heidelberg (1987)Google Scholar
  7. 7.
    Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: FOCS 1987, pp. 427–437 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marek Klonowski
    • 1
  • Przemysław Kubiak
    • 1
  • Mirosław Kutyłowski
    • 1
  • Anna Lauks
    • 1
  1. 1.Institute of Mathematics and Computer ScienceWrocław University of Technology 

Personalised recommendations