An Efficient Algorithm Finds Noticeable Trends and Examples Concerning the Černy Conjecture

  • A. N. Trahtman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


A word w is called synchronizing (recurrent, reset, directed) word of a deterministic finite automaton (DFA) if w sends all states of the automaton on a unique state. Jan Černy had found in 1964 a sequence of n-state complete DFA with shortest synchronizing word of length (n–1)2. He had conjectured that it is an upper bound for the length of the shortest synchronizing word for any n-state complete DFA.

The examples of DFA with shortest synchronizing word of length (n–1)2 are relatively rare. To the Černy sequence were added in all examples of Černy, Piricka and Rosenauerova (1971), of Kari (2001) and of Roman (2004).

By help of a program based on some effective algorithms, a wide class of automata of size less than 11 was checked. The order of the algorithm finding synchronizing word is quadratic for overwhelming majority of known to date automata. Some new examples of n-state DFA with minimal synchronizing word of length (n–1)2 were discovered. The program recognized some remarkable trends concerning the length of the minimal synchronizing word.


Deterministic finite automaton synchronizing word algorithm complexity Černy conjecture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ananichev, D.S., Cherubini, A., Volkov, M.V.: An inverse automata algorithm for recognizing 2-collapsing words. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 270–282. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Černy, J.: Poznamka k homogenym eksperimentom s konechnymi automatami. Math.-Fyz. Čas. 14, 208–215 (1964)zbMATHGoogle Scholar
  3. 3.
    Černy, J., Piricka, A., Rosenauerova, B.: On directable automata. Kybernetika 7, 289–298 (1971)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19, 500–510 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127 (1982)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Kari, J.: A counter example to a conjecture concerning synchronizing word in finite automata. EATCS Bulletin 73, 146–147 (2001)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Kim, S., McNaughton, R., McCloskey, R.: A polynomial time algorithm for the local testability problem of deterministic finite automata. IEEE Trans. Comput., N10 40, 1087–1093 (1991)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kljachko, A.A., Rystsov, I.K., Spivak, M.A.: An extremely combinatorial problem connected with the bound on the length of a recurrent word in an automata. Kybernetika 2, 16–25 (1987)Google Scholar
  9. 9.
    Kohavi, Z., Winograd, J.: Establishing certain bounds concerning finite automata. J. Comp. System Sci. 7, 288–299 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lee, D., Yannakakis, M.: Principle and methods of testing finite state mashines - A survey. Proc. of IEEE 8(84), 1090–1123 (1996)CrossRefGoogle Scholar
  11. 11.
    Natarajan, B.K.: An algorithmic approach to the automated design of parts orienters. In: ICALP 1978, pp. 132–142. IEEE, Los Alamitos (1986); LNCS, vol. 62, pp. 345–352. Springer, Heidelberg (1978)Google Scholar
  12. 12.
    Pin, J.-E.: On two combinatorial problems arising from automata theory. Annals of Discrete Math. 17, 535–548 (1983)zbMATHGoogle Scholar
  13. 13.
    Rho, J.-K., Somenzi, F., Pixley, C.: Minimum Length Synchronizing Sequences of Finite State Machine. In: Proc. of 30th ACM/IEEE DA Conf., pp. 463–466 (1993)Google Scholar
  14. 14.
    Roman, A.: A note on Cerny Conjecture for automata with 3-letter alphabet (submitted)Google Scholar
  15. 15.
    Salomaa, A.: Generation of constants and synchronization of finite automata. J. of Univers. Comput. Sci. 8(2), 332–347 (2002)MathSciNetGoogle Scholar
  16. 16.
    Trahtman, A.N.: Optimal estimation on the order of local testability of finite automata. Theoret. Comput. Sci. 231, 59–74 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Trahtman, A.N.: Verification of algorithms for checking some kinds of testability. In: Spoto, F., Scollo, G., Nijholt, A. (eds.) Algebraic Methods in Language Processing, TWLT 21, pp. 253–263 (2003)Google Scholar
  18. 18.
    Trahtman, A.N.: Černy conjecture for DFA accepting star-free languages. In: ICALP, Workshop on synchronizing automata, Turku, Finland (2004)Google Scholar
  19. 19.
    Trahtman, A.N.: Some results of implemented algorithms of synchronization. In: 10-th Journees Montoises d’Inform., Theor., LIege, Belgia (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. N. Trahtman
    • 1
  1. 1.Dep. of Math.Bar-Ilan UniversityRamat GanIsrael

Personalised recommendations