Querying and Embedding Compressed Texts

  • Yury Lifshits
  • Markus Lohrey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)

Abstract

The computational complexity of two simple string problems on compressed input strings is considered: the querying problem (What is the symbol at a given position in a given input string?) and the embedding problem (Can the first input string be embedded into the second input string?). Straight-line programs are used for text compression. It is shown that the querying problem becomes P-complete for compressed strings, while the embedding problem becomes hard for the complexity class \(\Theta^{p}_{2}\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, A., Benson, G., Farach, M.: Let sleeping files lie: Pattern matching in Z-compressed files. J. Comput. Syst. Sci 52(2), 299–307 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: From word to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W., Rytter, W.: On the complexity of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci. 65(2), 332–350 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554–2576 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP–completeness. W.H. Freeman, New York (1979)MATHGoogle Scholar
  7. 7.
    Gasieniec, L., Gibbons, A., Rytter, W.: Efficiency of fast parallel pattern searching in highly compressed texts. In: Kutyłowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 48–58. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation: P-Completeness Theory. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  10. 10.
    Gushfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University Press, Cambridge (1999)Google Scholar
  11. 11.
    Karloff, H.J., Ruzzo, W.L.: The iterated mod problem. Inf. Comput. 80(3), 193–204 (1989)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5), 1210–1240 (2006)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Markey, N., Schnoebelen, P.: A PTIME-complete matching problem for SLP-compressed words. Inf. Process. Lett. 90(1), 3–6 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Navarro, G.: Regular expression searching on compressed text. J. Discrete Algorithms 1(5–6), 423–443 (2003)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  17. 17.
    Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  18. 18.
    Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 262–272. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Rytter, W.: Algorithms on compressed strings and arrays. In: Bartosek, M., Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 48–65. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Rytter, W.: Compressed and fully compressed pattern matching in one and two dimensions. Proceedings of the IEEE 88(11), 1769–1778 (2000)CrossRefGoogle Scholar
  21. 21.
    Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit input. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Wagner, K.W.: More complicated questions about maxima and minima, and some closures of NP. Theor. Comput. Sci. 51, 53–80 (1987)MATHCrossRefGoogle Scholar
  24. 24.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yury Lifshits
    • 1
  • Markus Lohrey
    • 2
  1. 1.Steklov Institut of MathematicsSt.PetersburgRussia
  2. 2.FMIUniversität StuttgartGermany

Personalised recommendations