An Expressive Temporal Logic for Real Time

  • Yoram Hirshfeld
  • Alexander Rabinovich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)


We add to the standard temporal logic with the modalities ”Until” and ”Since”, a sequence of “counting modalities”: For each n the modality C n (X), which says that X will be true at least at n points in the next unit of time, and its past counterpart \({\overleftarrow{C}_n}\), which says that X has happened at least n times in the last unit of time. We prove that this temporal logic is as expressive as can be hoped for; all the modalities that can be expressed in a strong natural decidable predicate logic framework, are expressible in this temporal logic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43, 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Logics and Models of Real Time: a survey. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  3. 3.
    Brzozowski, J.A., Knast, R.: The dot depth hierarchy of star free languages is infinite. J. of Computing Systems Science 16, 37–55 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barringer, B.H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: Proceedings of the 13th annual symposium on principles of programing languages, pp. 173–183 (1986)Google Scholar
  5. 5.
    Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in mathematical logic. Springer, Heidelberg (1991)Google Scholar
  6. 6.
    Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fundamenta Mathematicae 49, 129–141 (1961)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Feferman, S., Vaught, R.L.: The first-order properties of products of algebraic systems. Fundamenta Mathematicae 47, 57–103 (1959)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logics, vol. 1. Clarendon Press, Oxford (1994)CrossRefGoogle Scholar
  9. 9.
    Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the Temporal Analysis of Fairness. In: 7th ACM Symposium on Principles of Programming Languages, Las Vegas, pp. 163–173 (1980)Google Scholar
  10. 10.
    Henzinger, T.A.: It’s about time: Real-time logics reviewed. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Gurevich, Y.: Monadic second-order theories. In: Barwise, J., Feferman, S. (eds.) Model-Theoretic Logics, pp. 479–506. Springer, Heidelberg (1985)Google Scholar
  12. 12.
    Hirshfeld, Y., Rabinovich, A.: A Framework for Decidable Metrical Logics. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 422–432. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Hirshfeld, Y., Rabinovich, A.: Quantitative Temporal Logic. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 172–187. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Hirshfeld, Y., Rabinovich, A.: Logics for Real Time: Decidability and Complexity. Fundam. Inform. 62(1), 1–28 (2004)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Hirshfeld, Y., Rabinovich, A.: Timer formulas and decidable metric temporal logic. Information and Computation 198(2), 148–178 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hirshfeld, Y., Rabinovich, A.: Expressiveness of Metric Modalities for Continuous Time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 211–220. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Hirshfeld, Y., Rabinovich, A.: On The complexity of the temporal logic with counting modalities. Manuscript (2006)Google Scholar
  18. 18.
    Kamp, H.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, University of California L.A. (1968)Google Scholar
  19. 19.
    Manna, Z., Pnueli, A.: Models for reactivity. Acta informatica 30, 609–678 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Makowsky, J.A.: Algorithmic aspects of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126(1-3), 159–213 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rabinovich, A.: Expressive Power of Temporal Logics. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 57–75. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Shelah, S.: The monadic theory of order. Ann. of Math. 102, 349–419 (1975)CrossRefGoogle Scholar
  23. 23.
    Thomas, W.: Ehrenfeucht games, the composition method, and the monadic theory of ordinal words. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 118–143. Springer, Heidelberg (1997)Google Scholar
  24. 24.
    Wilke, T.: Specifying Time State Sequences in Powerful Decidable Logics and Time Automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yoram Hirshfeld
    • 1
  • Alexander Rabinovich
    • 1
  1. 1.School of Computer Science, Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations