Partially Commutative Inverse Monoids

  • Volker Diekert
  • Markus Lohrey
  • Alexander Miller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4162)

Abstract

Free partially commutative inverse monoids are investigated. Analogously to free partially commutative monoids (trace monoids), free partially commutative inverse monoid are the quotients of free inverse monoids modulo a partially defined commutation relation on the generators. An O(n log(n)) algorithm on a RAM for the word problem is presented, and NP-completeness of the generalized word problem and the membership problem for rational sets is shown. Moreover, free partially commutative inverse monoids modulo a finite idempotent presentation are studied. For these monoids, the word problem is decidable if and only if the complement of the commutation relation is transitive.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bekic, H.: Definable operation in general algebras, and the theory of automata and flowcharts. In: Bekic, H. (ed.) Programming Languages and their Definition. LNCS, vol. 177, pp. 30–55. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  2. 2.
    Cori, R., Perrin, D.: Automates et commutations partielles. RAIRO — Inform. Théor. Appl. 19, 21–32 (1985)MATHMathSciNetGoogle Scholar
  3. 3.
    Diekert, V.: Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg (1990)MATHGoogle Scholar
  4. 4.
    Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)Google Scholar
  5. 5.
    Droms, C.: Graph groups, coherence and three-manifolds. J. Algebra 106(2), 484–489 (1985)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Kapovich, I., Weidmann, R., Myasnikov, A.: Foldings, graphs of groups and the membership problem. Internat. J. Algebra Comput. 15(1), 95–128 (2005)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Lohrey, M., Ondrusch, N.: Inverse monoids: decidability and complexity of algebraic questions. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 664–675. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Margolis, S., Meakin, J.: E-unitary inverse monoids and the Cayley graph of a group presentation. J. Pure Appl. Algebra 58(1), 45–76 (1989)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Margolis, S., Meakin, J.: Inverse monoids, trees, and context-free languages. Trans. Amer. Math. Soc. 335(1), 259–276 (1993)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Margolis, S., Meakin, J., Sapir, M.: Algorithmic problems in groups, semigroups and inverse semigroups. In: Semigroups, Formal Languages and Groups, pp. 147–214. Kluwer, Dordrecht (1995)Google Scholar
  12. 12.
    Meakin, J., Sapir, M.: The word problem in the variety of inverse semigroups with Abelian covers. J. London Math. Soc. (2) 53(1), 79–98 (1996)MATHMathSciNetGoogle Scholar
  13. 13.
    Mihailova, K.A.: The occurrence problem for direct products of groups. Math. USSR Sbornik 70, 241–251 (1966) (English translation)Google Scholar
  14. 14.
    Munn, W.: Free inverse semigroups. Proc. London Math. Soc. 30, 385–404 (1974)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Petrich, M.: Inverse semigroups. Wiley, Chichester (1984)MATHGoogle Scholar
  16. 16.
    Stephen, J.: Presentations of inverse monoids. J. Pure Appl. Algebra 63, 81–112 (1990)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Veloso da Costa, A.: Γ-Produtos de Monóides e Semigrupos. PhD thesis, Universidade do Porto (2003)Google Scholar
  18. 18.
    Walukiewicz, I.: Pushdown processes: games and model-checking. Inform. and Comput. 164(2), 234–263 (2001)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wrathall, C.: The word problem for free partially commutative groups. J. Symbolic Comput. 6(1), 99–104 (1988)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Volker Diekert
    • 1
  • Markus Lohrey
    • 1
  • Alexander Miller
    • 1
  1. 1.FMIUniversität StuttgartGermany

Personalised recommendations